cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A048879 Generalized Pellian with second term of 10.

Original entry on oeis.org

1, 10, 41, 174, 737, 3122, 13225, 56022, 237313, 1005274, 4258409, 18038910, 76414049, 323695106, 1371194473, 5808472998, 24605086465, 104228818858, 441520361897, 1870310266446, 7922761427681, 33561355977170, 142168185336361, 602234097322614
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a048879 n = a048879_list !! n
    a048879_list = 1 : 10 : zipWith (+)
                            a048879_list (map (* 4) $ tail a048879_list)
    -- Reinhard Zumkeller, Mar 03 2014
  • Maple
    with(combinat): a:=n->6*fibonacci(n-1,4)+fibonacci(n,4): seq(a(n), n=1..16); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4,1},{1,10},30] (* Harvey P. Dale, Jul 18 2011 *)

Formula

a(n) = ((8+sqrt(5))*(2+sqrt(5))^n - (8-sqrt(5))*(2-sqrt(5))^n)2*sqrt(5).
From Philippe Deléham, Nov 03 2008: (Start)
a(n) = 4*a(n-1) + a(n-2); a(0)=1, a(1)=10.
G.f.: (1+6*x)/(1-4*x-x^2). (End)
For n >= 1, a(n) equals the denominator of the continued fraction [4, 4, ..., 4, 10] (with n copies of 4). The numerator of that continued fraction is a(n+1). - ZhenShu Luan, Aug 05 2019

Extensions

More terms from Harvey P. Dale, Jul 18 2011