A048896 a(n) = 2^(A000120(n+1) - 1), n >= 0.
1, 1, 2, 1, 2, 2, 4, 1, 2, 2, 4, 2, 4, 4, 8, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 1, 2, 2, 4, 2, 4, 4, 8, 2, 4, 4, 8, 4, 8, 8, 16, 2, 4, 4, 8, 4, 8, 8, 16, 4, 8, 8, 16, 8, 16, 16, 32, 2, 4, 4
Offset: 0
Examples
From _Omar E. Pol_, Jul 21 2009: (Start) If written as a triangle: 1; 1,2; 1,2,2,4; 1,2,2,4,2,4,4,8; 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16; 1,2,2,4,2,4,4,8,2,4,4,8,4,8,8,16,2,4,4,8,4,8,8,16,4,8,8,16,8,16,16,32; ..., the first half-rows converge to Gould's sequence A001316. (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Neil J. Calkin, Eunice Y. S. Chan, and Robert M. Corless, Some Facts and Conjectures about Mandelbrot Polynomials, Maple Transactions (2021) Vol. 1, No. 1 Article 1.
- Neil J. Calkin, Eunice Y. S. Chan, Robert M. Corless, David J. Jeffrey, and Piers W. Lawrence, A Fractal Eigenvector, arXiv:2104.01116 [math.DS], 2021.
- Emeric Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
- OEIS Wiki, Montgomery's pair correlation conjecture
- Gus Wiseman, Statistics, classes, and transformations of standard compositions
Crossrefs
Programs
-
Haskell
a048896 n = a048896_list !! n a048896_list = f [1] where f (x:xs) = x : f (xs ++ [x,2*x]) -- Reinhard Zumkeller, Mar 07 2011
-
Haskell
import Data.List (transpose) a048896 = a000079 . a000120 a048896_list = 1 : concat (transpose [zipWith (-) (map (* 2) a048896_list) a048896_list, map (* 2) a048896_list]) -- Reinhard Zumkeller, Jun 16 2013
-
Magma
[Numerator(2^n / Factorial(n+1)): n in [0..100]]; // Vincenzo Librandi, Apr 12 2014
-
Maple
a := n -> 2^(add(i,i=convert(n+1,base,2))-1): seq(a(n), n=0..97); # Peter Luschny, May 01 2009
-
Mathematica
NestList[Flatten[#1 /. a_Integer -> {a, 2 a}] &, {1}, 4] // Flatten (* Robert G. Wilson v, Aug 01 2012 *) Table[Numerator[2^n / (n + 1)!], {n, 0, 200}] (* Vincenzo Librandi, Apr 12 2014 *) Denominator[Table[BernoulliB[2*n] / (Zeta[2*n]/Pi^(2*n)), {n, 1, 100}]] (* Terry D. Grant, May 29 2017 *) Table[Denominator[((2 n)!/2^(2 n + 1)) (-1)^n], {n, 1, 100}]/4 (* Terry D. Grant, May 29 2017 *) 2^IntegerExponent[CatalanNumber[Range[0,100]],2] (* Harvey P. Dale, Apr 30 2018 *)
-
PARI
a(n)=if(n<1,1,if(n%2,a(n/2-1/2),2*a(n-1)))
-
PARI
a(n) = 1 << (hammingweight(n+1)-1); \\ Kevin Ryde, Feb 19 2022
Formula
a(n) = 2^A048881(n).
It appears that a(n) = Sum_{k=0..n} binomial(2*(n+1), k) mod 2. - Christopher Lenard (c.lenard(AT)bendigo.latrobe.edu.au), Aug 20 2001
a(0) = 1; a(2*n) = 2*a(2*n-1); a(2*n+1) = a(n).
a(n) = (1/2) * A001316(n+1). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 26 2004
It appears that a(n) = Sum_{k=0..2n} floor(binomial(2n+2, k+1)/2)(-1)^k = 2^n - Sum_{k=0..n+1} floor(binomial(n+1, k)/2). - Paul Barry, Dec 24 2004
a(n) = Sum_{k=0..n} (T(n,k) mod 2) where T = A039598, A053121, A052179, A124575, A126075, A126093. - Philippe Deléham, May 02 2007
a(n) = numerator(b(n)), where sin(x)^2/x = Sum_{n>0} b(n)*(-1)^n x^(2*n-1). - Vladimir Kruchinin, Feb 06 2013
a((2*n+1)*2^p-1) = A001316(n), p >= 0 and n >= 0. - Johannes W. Meijer, Feb 12 2013
a(n) = numerator(2^n / (n+1)!). - Vincenzo Librandi, Apr 12 2014
a(2n) = (2n+1)!/(n!n!)/A001803(n). - Richard Turk, Aug 23 2017
a(2n-1) = (2n-1)!/(n!(n-1)!)/A001790(n). - Richard Turk, Aug 23 2017
Extensions
New definition from N. J. A. Sloane, Mar 01 2008
Comments