A048994 Triangle of Stirling numbers of first kind, s(n,k), n >= 0, 0 <= k <= n.
1, 0, 1, 0, -1, 1, 0, 2, -3, 1, 0, -6, 11, -6, 1, 0, 24, -50, 35, -10, 1, 0, -120, 274, -225, 85, -15, 1, 0, 720, -1764, 1624, -735, 175, -21, 1, 0, -5040, 13068, -13132, 6769, -1960, 322, -28, 1, 0, 40320, -109584, 118124, -67284, 22449, -4536, 546, -36, 1, 0, -362880, 1026576, -1172700, 723680, -269325, 63273, -9450, 870, -45, 1
Offset: 0
Examples
Triangle begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0 1 1 0 1 2 0 -1 1 3 0 2 -3 1 4 0 -6 11 -6 1 5 0 24 -50 35 -10 1 6 0 -120 274 -225 85 -15 1 7 0 720 -1764 1624 -735 175 -21 1 8 0 -5040 13068 -13132 6769 -1960 322 -28 1 9 0 40320 -109584 118124 -67284 22449 -4536 546 -36 1 ... - _Wolfdieter Lang_, Aug 22 2012 ------------------------------------------------------------------ From _Wolfdieter Lang_, Nov 14 2018: (Start) Recurrence: s(5,2)= s(4, 1) - 4*s(4, 2) = -6 - 4*11 = -50. Recurrence from the a- and z-sequences: s(6, 3) = 2*(1*1*(-50) + 3*(-1/2)*35 + 6*(1/6)*(-10) + 10*0*1) = -225. Boas-Buck recurrence for column k = 3, with b = {-1/2, 5/12, -3/8, ...}: s(6, 3) = 6!*((-3/8)*1/3! + (5/12)*(-6)/4! + (-1/2)*35/5!) = -225. (End)
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 833.
- L. Comtet, Advanced Combinatorics, Reidel, 1974; Chapter V, also p. 310.
- J. H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, NY, 1996, p. 93.
- F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 226.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 245.
- J. Riordan, An Introduction to Combinatorial Analysis, p. 48.
Links
- T. D. Noe, Rows n=0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Toda Chain Equations, Journal of Integer Sequences, 17 (2014), #14.2.3.
- Fatima Zohra Bensaci, Rachid Boumahdi, and Laala Khaldi, Finite Sums Involving Fibonacci and Lucas Numbers, J. Int. Seq. (2024). See p. 9.
- R. M. Dickau, Stirling numbers of the first kind. [Illustrates the unsigned Stirling cycle numbers A132393.]
- Askar Dzhumadil'daev and Damir Yeliussizov, Walks, partitions, and normal ordering, Electronic Journal of Combinatorics, 22(4) (2015), #P4.10.
- Bill Gosper, Colored illustrations of triangle of Stirling numbers of first kind read mod 2, 3, 4, 5, 6, 7.
- Gergő Nemes, An Asymptotic Expansion for the Bernoulli Numbers of the Second Kind, J. Int. Seq. 14 (2011), #11.4.8.
- A. Hennessy and Paul Barry, Generalized Stirling Numbers, Exponential Riordan Arrays, and Orthogonal Polynomials, J. Int. Seq. 14 (2011), #11.8.2 (A-number typo A048894).
- NIST Digital Library of Mathematical Functions, Stirling Numbers
- Ken Ono, Larry Rolen, and Florian Sprung, Zeta-Polynomials for modular form periods, p. 6, arXiv:1602.00752 [math.NT], 2016.
- Ricardo A. Podestá, New identities for binary Krawtchouk polynomials, binomial coefficients and Catalan numbers, arXiv preprint arXiv:1603.09156 [math.CO], 2016.
- Ronald Read, An Introduction to Chromatic Polynomials, Journal of Combinatorial Theory, 4(1968)52-71.
- Wikipedia, Stirling numbers and exponential generating functions.
Crossrefs
Programs
-
Haskell
a048994 n k = a048994_tabl !! n !! k a048994_row n = a048994_tabl !! n a048994_tabl = map fst $ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 0) -- Reinhard Zumkeller, Mar 18 2013
-
Maple
A048994:= proc(n,k) combinat[stirling1](n,k) end: # R. J. Mathar, Feb 23 2009 seq(print(seq(coeff(expand(k!*binomial(x,k)),x,i),i=0..k)),k=0..9); # Peter Luschny, Jul 13 2009 A048994_row := proc(n) local k; seq(coeff(expand(pochhammer(x-n+1,n)), x,k), k=0..n) end: # Peter Luschny, Dec 30 2010
-
Mathematica
Table[StirlingS1[n, m], {n, 0, 9}, {m, 0, n}] (* Peter Luschny, Dec 30 2010 *)
-
Maxima
create_list(stirling1(n,k),n,0,12,k,0,n); /* Emanuele Munarini, Mar 11 2011 */
-
PARI
a(n,k) = if(k<0 || k>n,0, if(n==0,1,(n-1)*a(n-1,k)+a(n-1,k-1)))
-
PARI
trg(nn)=for (n=0, nn-1, for (k=0, n, print1(stirling(n,k,1), ", ");); print();); \\ Michel Marcus, Jan 19 2015
Formula
s(n, k) = A008275(n,k) for n >= 1, k = 1..n; column k = 0 is {1, repeat(0)}.
s(n, k) = s(n-1, k-1) - (n-1)*s(n-1, k), n, k >= 1; s(n, 0) = s(0, k) = 0; s(0, 0) = 1.
The unsigned numbers a(n, k)=|s(n, k)| satisfy a(n, k)=a(n-1, k-1)+(n-1)*a(n-1, k), n, k >= 1; a(n, 0) = a(0, k) = 0; a(0, 0) = 1.
Triangle (signed) = [0, -1, -1, -2, -2, -3, -3, -4, -4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; Triangle(unsigned) = [0, 1, 1, 2, 2, 3, 3, 4, 4, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; where DELTA is Deléham's operator defined in A084938.
Sum_{k=0..n} (-m)^(n-k)*s(n, k) = A000142(n), A001147(n), A007559(n), A007696(n), ... for m = 1, 2, 3, 4, ... .- Philippe Deléham, Oct 29 2005
T(n,k) = n!*[x^k]([t^n]exp(x*log(1+t))). - Peter Luschny, Dec 30 2010, updated Jun 07 2020
From Wolfdieter Lang, Nov 14 2018: (Start)
Recurrence from the Sheffer a-sequence (see a comment above): s(n, k) = (n/k)*Sum_{j=0..n-k} binomial(k-1+j, j)*Bernoulli(j)*s(n-1, k-1+j), for n >= 1 and k >= 1, with s(n, 0) = 0 if n >= 1, and s(0,0) = 1.
Boas-Buck type recurrence for column k: s(n, k) = (n!*k/(n - k))*Sum_{j=k..n-1} b(n-1-j)*s(j, k)/j!, for n >= 1 and k = 0..n-1, with input s(n, n) = 1. For sequence b see the Boas-Buck comment above. (End)
Extensions
Offset corrected by R. J. Mathar, Feb 23 2009
Formula corrected by Philippe Deléham, Sep 10 2009
Comments