cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 265 results. Next

A066248 a(n) = if n+1 is prime then A049084(n+1)*2 else A066246(n+1)*2 - 1.

Original entry on oeis.org

2, 4, 1, 6, 3, 8, 5, 7, 9, 10, 11, 12, 13, 15, 17, 14, 19, 16, 21, 23, 25, 18, 27, 29, 31, 33, 35, 20, 37, 22, 39, 41, 43, 45, 47, 24, 49, 51, 53, 26, 55, 28, 57, 59, 61, 30, 63, 65, 67, 69, 71, 32, 73, 75, 77, 79, 81, 34, 83, 36, 85, 87, 89, 91, 93, 38, 95, 97, 99, 40, 101, 42
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Comments

Permutation of natural numbers; inverse: A066249.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[PrimeQ[n+1], 2 * PrimePi[n+1], 2 * (n - PrimePi[n+1]) - 1]; Array[a, 100] (* Amiram Eldar, Mar 19 2025 *)

Formula

a(n) = A026238(n+1)*2 - A066247(n+1).

A250552 A049084(A247797(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 9, 6, 10, 7, 13, 11, 14, 8, 15, 12, 18, 16, 19, 17, 23, 20, 24, 21, 33, 22, 30, 25, 32, 26, 34, 27, 36, 28, 37, 29, 40, 31, 41, 35, 43, 38, 44, 39, 45, 42, 46, 47, 48, 49, 50, 51, 53, 54, 56, 52, 57, 55, 60, 58, 61, 59, 64, 62, 66, 63, 65, 68
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 10 2014

Keywords

Comments

A000040(a(n)) = A247797(n);
a permutation of the positive integers with inverse A250553.

Crossrefs

Cf. A049084, A247797, A250553 (inverse), A247204 (fixed points).

Programs

  • Haskell
    a250552 = a049084 . a247797

A066250 a(n) = if n+1 is prime then A049084(n+1)*2 - 1 else A066246(n+1)*2.

Original entry on oeis.org

1, 3, 2, 5, 4, 7, 6, 8, 10, 9, 12, 11, 14, 16, 18, 13, 20, 15, 22, 24, 26, 17, 28, 30, 32, 34, 36, 19, 38, 21, 40, 42, 44, 46, 48, 23, 50, 52, 54, 25, 56, 27, 58, 60, 62, 29, 64, 66, 68, 70, 72, 31, 74, 76, 78, 80, 82, 33, 84, 35, 86, 88, 90, 92, 94, 37, 96, 98, 100, 39, 102
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 09 2001

Keywords

Comments

Permutation of natural numbers; inverse: A066251.

Crossrefs

Formula

a(n) = A026238(n+1)*2 - A010051(n+1).

A077040 Primes p such that abs(A077039(A049084(p))) <= p.

Original entry on oeis.org

2, 3, 5, 7, 13, 17, 19, 29, 31, 37, 43, 47, 53, 59, 61, 67, 73, 97, 101, 103, 109, 113, 127, 137, 149, 157, 181, 193, 197, 199, 281, 293, 317, 337, 349, 353, 359, 373, 397, 401, 419, 431, 439, 443, 449, 467, 479, 617, 677, 709, 773, 797, 809, 811, 821, 823, 829
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2002

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a077040 n = a077040_list !! (n-1)
    a077040_list = map (a000040 . (+ 1)) $ findIndices (<= 0) $
       zipWith (\s p -> abs s - p) a077039_list a000040_list
    -- Reinhard Zumkeller, Feb 28 2012

A077041 Primes p such that abs(A077039(A049084(p))) > p.

Original entry on oeis.org

11, 23, 41, 71, 79, 83, 89, 107, 131, 139, 151, 163, 167, 173, 179, 191, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 283, 307, 311, 313, 331, 347, 367, 379, 383, 389, 409, 421, 433, 457, 461, 463, 487, 491, 499, 503, 509, 521, 523, 541
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 21 2002

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (findIndices)
    a077041 n = a077041_list !! (n-1)
    a077041_list = map (a000040 . (+ 1)) $ findIndices (> 0) $
       zipWith (\s p -> abs s - p) a077039_list a000040_list
    -- Reinhard Zumkeller, Feb 28 2012

A079419 Primes p such that p/i(p) < prime(i(p)-1)/(i(p)-1), where i(p) = A049084(p).

Original entry on oeis.org

3, 13, 19, 31, 43, 61, 73, 103, 109, 131, 139, 151, 167, 181, 193, 197, 199, 227, 229, 233, 241, 271, 281, 283, 311, 313, 317, 349, 353, 383, 401, 421, 433, 443, 461, 463, 467, 491, 503, 523, 571, 601, 617, 619, 643, 647, 661, 677, 743, 761, 773, 811, 823
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 07 2003

Keywords

Crossrefs

Programs

Formula

a(n) = A000040(A079418(n)).

A085985 a(n) = A049084(A085818(n)).

Original entry on oeis.org

0, 1, 2, 1, 3, 4, 5, 1, 2, 6, 7, 8, 9, 10, 11, 1, 12, 13, 14, 15, 16, 17, 18, 19, 3, 20, 2, 21, 22, 23, 24, 1, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 4, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 1, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 06 2003

Keywords

Comments

a(A085971(n))=A000027(n) and for all k>1: a(A000040(n)^k)=A000027(n).

A056239 If n = Product_{k >= 1} (p_k)^(c_k) where p_k is k-th prime and c_k >= 0 then a(n) = Sum_{k >= 1} k*c_k.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 5, 4, 7, 5, 8, 5, 6, 6, 9, 5, 6, 7, 6, 6, 10, 6, 11, 5, 7, 8, 7, 6, 12, 9, 8, 6, 13, 7, 14, 7, 7, 10, 15, 6, 8, 7, 9, 8, 16, 7, 8, 7, 10, 11, 17, 7, 18, 12, 8, 6, 9, 8, 19, 9, 11, 8, 20, 7, 21, 13, 8, 10, 9, 9, 22, 7, 8, 14, 23, 8, 10, 15, 12, 8, 24, 8, 10
Offset: 1

Views

Author

Leroy Quet, Aug 19 2000

Keywords

Comments

A pseudo-logarithmic function in the sense that a(b*c) = a(b)+a(c) and so a(b^c) = c*a(b) and f(n) = k^a(n) is a multiplicative function. [Cf. A248692 for example.] Essentially a function from the positive integers onto the partitions of the nonnegative integers (1->0, 2->1, 3->2, 4->1+1, 5->3, 6->1+2, etc.) so each value a(n) appears A000041(a(n)) times, first with the a(n)-th prime and last with the a(n)-th power of 2. Produces triangular numbers from primorials. - Henry Bottomley, Nov 22 2001
Michael Nyvang writes (May 08 2006) that the Danish composer Karl Aage Rasmussen discovered this sequence in the 1990's: it has excellent musical properties.
All A000041(a(n)) different n's with the same value a(n) are listed in row a(n) of triangle A215366. - Alois P. Heinz, Aug 09 2012
a(n) is the sum of the parts of the partition having Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} (p_j-th prime) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. Example: a(33) = 7 because the partition with Heinz number 33 = 3 * 11 is [2,5]. - Emeric Deutsch, May 19 2015

Examples

			a(12) = 1*2 + 2*1 = 4, since 12 = 2^2 *3^1 = (p_1)^2 *(p_2)^1.
		

Crossrefs

Programs

  • Haskell
    a056239 n = sum $ zipWith (*) (map a049084 $ a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Apr 27 2013
    
  • Maple
    # To get 10000 terms. First make prime table: M:=10000; pl:=array(1..M); for i from 1 to M do pl[i]:=0; od: for i from 1 to M do if ithprime(i) > M then break; fi; pl[ithprime(i)]:=i; od:
    # Decode Maple's amazing syntax for factoring integers: g:=proc(n) local e,p,t1,t2,t3,i,j,k; global pl; t1:=ifactor(n); t2:=nops(t1); if t2 = 2 and whattype(t1) <> `*` then p:=op(1,op(1,t1)); e:=op(2,t1); t3:=pl[p]*e; else
    t3:=0; for i from 1 to t2 do j:=op(i,t1); if nops(j) = 1 then e:=1; p:=op(1,j); else e:=op(2,j); p:=op(1,op(1,j)); fi; t3:=t3+pl[p]*e; od: fi; t3; end; # N. J. A. Sloane, May 10 2006
    A056239 := proc(n) add( numtheory[pi](op(1,p))*op(2,p), p = ifactors(n)[2]) ; end proc: # R. J. Mathar, Apr 20 2010
    # alternative:
    with(numtheory): a := proc (n) local B: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: add(B(n)[i], i = 1 .. nops(B(n))) end proc: seq(a(n), n = 1 .. 130); # Emeric Deutsch, May 19 2015
  • Mathematica
    a[1] = 0; a[2] = 1; a[p_?PrimeQ] := a[p] = PrimePi[p];
    a[n_] := a[n] = Total[#[[2]]*a[#[[1]]] & /@ FactorInteger[n]]; a /@ Range[91] (* Jean-François Alcover, May 19 2011 *)
    Table[Total[FactorInteger[n] /. {p_, c_} /; p > 0 :> PrimePi[p] c], {n, 91}] (* Michael De Vlieger, Jul 12 2017 *)
  • PARI
    A056239(n) = if(1==n,0,my(f=factor(n)); sum(i=1, #f~, f[i,2] * primepi(f[i,1]))); \\ Antti Karttunen, Oct 26 2014, edited Jan 13 2020
    
  • Python
    from sympy import primepi, factorint
    def A056239(n): return sum(primepi(p)*e for p, e in factorint(n).items()) # Chai Wah Wu, Jan 01 2023
  • Scheme
    (require 'factor) ;; Uses the function factor available in Aubrey Jaffer's SLIB Scheme library.
    (define (A056239 n) (apply + (map A049084 (factor n))))
    ;; Antti Karttunen, Oct 26 2014
    

Formula

Totally additive with a(p) = PrimePi(p), where PrimePi(n) = A000720(n).
a(n) = Sum_{k=1..A001221(n)} A049084(A027748(k))*A124010(k). - Reinhard Zumkeller, Apr 27 2013
From Antti Karttunen, Oct 11 2014: (Start)
a(n) = n - A178503(n).
a(n) = A161511(A156552(n)).
a(n) = A227183(A243354(n)).
For all n >= 0:
a(A002110(n)) = A000217(n). [Cf. Henry Bottomley's comment above.]
a(A005940(n+1)) = A161511(n).
a(A243353(n)) = A227183(n).
Also, for all n >= 1:
a(A241909(n)) = A243503(n).
a(A122111(n)) = a(n).
a(A242424(n)) = a(n).
A248692(n) = 2^a(n). (End)
a(n) < A329605(n), a(n) = A001222(A108951(n)), a(A329902(n)) = A112778(n). - Antti Karttunen, Jan 14 2020

A112798 Table where n-th row is factorization of n, with each prime p_i replaced by i.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 4, 1, 1, 1, 2, 2, 1, 3, 5, 1, 1, 2, 6, 1, 4, 2, 3, 1, 1, 1, 1, 7, 1, 2, 2, 8, 1, 1, 3, 2, 4, 1, 5, 9, 1, 1, 1, 2, 3, 3, 1, 6, 2, 2, 2, 1, 1, 4, 10, 1, 2, 3, 11, 1, 1, 1, 1, 1, 2, 5, 1, 7, 3, 4, 1, 1, 2, 2, 12, 1, 8, 2, 6, 1, 1, 1, 3, 13, 1, 2, 4, 14, 1, 1, 5, 2, 2, 3, 1, 9, 15, 1, 1, 1, 1
Offset: 2

Views

Author

Keywords

Comments

This is an enumeration of all partitions.
Technically this is an enumeration of all multisets (finite weakly increasing sequences of positive integers) rather than integer partitions. - Gus Wiseman, Dec 12 2016
A000040(a(n)) is a prime factor of A082288(n). - Reinhard Zumkeller, Feb 03 2008
Row n is the partition with Heinz number n. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1..r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436. For a given n, the 2nd Maple program yields row n; for example, we obtain at once B(2436) = [1,1,2,4,10]. - Emeric Deutsch, Jun 04 2015
From Emeric Deutsch, May 05 2015: (Start)
Number of entries in row n is bigomega(n) (i.e., the number of prime factors of n, multiplicities included).
Product of entries in row n = A003963(n).
Row n contains the Matula numbers of the rooted trees obtained from the rooted tree with Matula number n by deleting the edges emanating from the root. Example: row 8 is 1,1,1; indeed the rooted tree with Matula number 8 is \|/ and deleting the edges emanating from the root we obtain three one-vertex trees, having Matula numbers 1, 1, 1. Example: row 7 is 4; indeed, the rooted tree with Matula number 7 is Y and deleting the edges emanating from the root we obtain the rooted tree V, having Matula number 4.
The Matula (or Matula-Goebel) number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m >= 2 there corresponds the product of the Matula-Goebel numbers of the m branches of T. (End)

Examples

			Row 20 is 1,1,3 because the prime factors of 20, namely 2,2,5 are the 1st, 1st, 3rd primes.
Table begins:
  1;
  2;
  1, 1;
  3;
  1, 2;
  4;
  1, 1, 1;
  ...
The sequence of all finite multisets of positive integers begins: (), (1), (2), (11), (3), (12), (4), (111), (22), (13), (5), (112), (6), (14), (23), (1111), (7), (122), (8), (113), (24), (15), (9), (1112), (33), (16), (222), (114). - _Gus Wiseman_, Dec 12 2016
		

Crossrefs

Row lengths are A001222. Cf. A000040, A027746, A000720, A036036.
Cf. A056239 (row sums).
Cf. A003963 (row products).

Programs

  • Haskell
    a112798 n k = a112798_tabf !! (n-2) !! (n-1)
    a112798_row n = a112798_tabf !! (n-2)
    a112798_tabf = map (map a049084) $ tail a027746_tabf
    -- Reinhard Zumkeller, Aug 04 2014
    
  • Maple
    T:= n-> sort([seq(numtheory[pi](i[1])$i[2], i=ifactors(n)[2])])[]:
    seq(T(n), n=2..50);  # Alois P. Heinz, Aug 09 2012
    with(numtheory): B := proc (n) local nn, j, m: nn := op(2, ifactors(n)); for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: # Emeric Deutsch, Jun 04 2015. (This is equivalent to the first Maple program.)
  • Mathematica
    PrimePi /@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #] & /@ Range@ 60 // Flatten // Rest (* Michael De Vlieger, May 09 2015 *)
  • PARI
    row(n)=my(v=List(),f=factor(n)); for(i=1,#f~,for(j=1,f[i,2], listput(v,primepi(f[i,1])))); Vec(v) \\ Charles R Greathouse IV, Nov 09 2021

Formula

T(n,k) = A000720(A027746(n,k)); A027746(n,k) = A000040(T(n,k)).
Also T(n,k) = A049084(A027746(n,k)). - Reinhard Zumkeller, Aug 04 2014

A003961 Completely multiplicative with a(prime(k)) = prime(k+1).

Original entry on oeis.org

1, 3, 5, 9, 7, 15, 11, 27, 25, 21, 13, 45, 17, 33, 35, 81, 19, 75, 23, 63, 55, 39, 29, 135, 49, 51, 125, 99, 31, 105, 37, 243, 65, 57, 77, 225, 41, 69, 85, 189, 43, 165, 47, 117, 175, 87, 53, 405, 121, 147, 95, 153, 59, 375, 91, 297, 115, 93, 61, 315, 67, 111, 275, 729, 119
Offset: 1

Views

Author

Keywords

Comments

Meyers (see Guy reference) conjectures that for all r >= 1, the least odd number not in the set {a(i): i < prime(r)} is prime(r+1). - N. J. A. Sloane, Jan 08 2021
Meyers' conjecture would be refuted if and only if for some r there were such a large gap between prime(r) and prime(r+1) that there existed a composite c for which prime(r) < c < a(c) < prime(r+1), in which case (by Bertrand's postulate) c would necessarily be a term of A246281. - Antti Karttunen, Mar 29 2021
a(n) is odd for all n and for each odd m there exists a k with a(k) = m (see A064216). a(n) > n for n > 1: bijection between the odd and all numbers. - Reinhard Zumkeller, Sep 26 2001
a(n) and n have the same number of distinct primes with (A001222) and without multiplicity (A001221). - Michel Marcus, Jun 13 2014
From Antti Karttunen, Nov 01 2019: (Start)
More generally, a(n) has the same prime signature as n, A046523(a(n)) = A046523(n). Also A246277(a(n)) = A246277(n) and A287170(a(n)) = A287170(n).
Many permutations and other sequences that employ prime factorization of n to encode either polynomials, partitions (via Heinz numbers) or multisets in general can be easily defined by using this sequence as one of their constituent functions. See the last line in the Crossrefs section for examples.
(End)

Examples

			a(12) = a(2^2 * 3) = a(prime(1)^2 * prime(2)) = prime(2)^2 * prime(3) = 3^2 * 5 = 45.
a(A002110(n)) = A002110(n + 1) / 2.
		

References

  • Richard K. Guy, editor, Problems From Western Number Theory Conferences, Labor Day, 1983, Problem 367 (Proposed by Leroy F. Meyers, The Ohio State U.).

Crossrefs

See A045965 for another version.
Row 1 of table A242378 (which gives the "k-th powers" of this sequence), row 3 of A297845 and of A306697. See also arrays A066117, A246278, A255483, A308503, A329050.
Cf. A064989 (a left inverse), A064216, A000040, A002110, A000265, A027746, A046523, A048673 (= (a(n)+1)/2), A108228 (= (a(n)-1)/2), A191002 (= a(n)*n), A252748 (= a(n)-2n), A286385 (= a(n)-sigma(n)), A283980 (= a(n)*A006519(n)), A341529 (= a(n)*sigma(n)), A326042, A049084, A001221, A001222, A122111, A225546, A260443, A245606, A244319, A246269 (= A065338(a(n))), A322361 (= gcd(n, a(n))), A305293.
Cf. A249734, A249735 (bisections).
Cf. A246261 (a(n) is of the form 4k+1), A246263 (of the form 4k+3), A246271, A246272, A246259, A246281 (n such that a(n) < 2n), A246282 (n such that a(n) > 2n), A252742.
Cf. A275717 (a(n) > a(n-1)), A275718 (a(n) < a(n-1)).
Cf. A003972 (Möbius transform), A003973 (Inverse Möbius transform), A318321.
Cf. A300841, A305421, A322991, A250469, A269379 for analogous shift-operators in other factorization and quasi-factorization systems.
Cf. also following permutations and other sequences that can be defined with the help of this sequence: A005940, A163511, A122111, A260443, A206296, A265408, A265750, A275733, A275735, A297845, A091202 & A091203, A250245 & A250246, A302023 & A302024, A302025 & A302026.
A version for partition numbers is A003964, strict A357853.
A permutation of A005408.
Applying the same transformation again gives A357852.
Other multiplicative sequences: A064988, A357977, A357978, A357980, A357983.
A056239 adds up prime indices, row-sums of A112798.

Programs

  • Haskell
    a003961 1 = 1
    a003961 n = product $ map (a000040 . (+ 1) . a049084) $ a027746_row n
    -- Reinhard Zumkeller, Apr 09 2012, Oct 09 2011
    (MIT/GNU Scheme, with Aubrey Jaffer's SLIB Scheme library)
    (require 'factor)
    (define (A003961 n) (apply * (map A000040 (map 1+ (map A049084 (factor n))))))
    ;; Antti Karttunen, May 20 2014
    
  • Maple
    a:= n-> mul(nextprime(i[1])^i[2], i=ifactors(n)[2]):
    seq(a(n), n=1..80);  # Alois P. Heinz, Sep 13 2017
  • Mathematica
    a[p_?PrimeQ] := a[p] = Prime[ PrimePi[p] + 1]; a[1] = 1; a[n_] := a[n] = Times @@ (a[#1]^#2& @@@ FactorInteger[n]); Table[a[n], {n, 1, 65}] (* Jean-François Alcover, Dec 01 2011, updated Sep 20 2019 *)
    Table[Times @@ Map[#1^#2 & @@ # &, FactorInteger[n] /. {p_, e_} /; e > 0 :> {Prime[PrimePi@ p + 1], e}] - Boole[n == 1], {n, 65}] (* Michael De Vlieger, Mar 24 2017 *)
  • PARI
    a(n)=local(f); if(n<1,0,f=factor(n); prod(k=1,matsize(f)[1],nextprime(1+f[k,1])^f[k,2]))
    
  • PARI
    a(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ Michel Marcus, May 17 2014
    
  • Perl
    use ntheory ":all";  sub a003961 { vecprod(map { next_prime($) } factor(shift)); }  # _Dana Jacobsen, Mar 06 2016
    
  • Python
    from sympy import factorint, prime, primepi, prod
    def a(n):
        f=factorint(n)
        return 1 if n==1 else prod(prime(primepi(i) + 1)**f[i] for i in f)
    [a(n) for n in range(1, 11)] # Indranil Ghosh, May 13 2017

Formula

If n = Product p(k)^e(k) then a(n) = Product p(k+1)^e(k).
Multiplicative with a(p^e) = A000040(A000720(p)+1)^e. - David W. Wilson, Aug 01 2001
a(n) = Product_{k=1..A001221(n)} A000040(A049084(A027748(n,k))+1)^A124010(n,k). - Reinhard Zumkeller, Oct 09 2011 [Corrected by Peter Munn, Nov 11 2019]
A064989(a(n)) = n and a(A064989(n)) = A000265(n). - Antti Karttunen, May 20 2014 & Nov 01 2019
A001221(a(n)) = A001221(n) and A001222(a(n)) = A001222(n). - Michel Marcus, Jun 13 2014
From Peter Munn, Oct 31 2019: (Start)
a(n) = A225546((A225546(n))^2).
a(A225546(n)) = A225546(n^2).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} ((p^2-p)/(p^2-nextprime(p))) = 2.06399637... . - Amiram Eldar, Nov 18 2022
Showing 1-10 of 265 results. Next