A049124 Revert transform of (-1 + x + x^2)/((x - 1)*(x + 1)).
1, 1, 2, 6, 20, 71, 264, 1015, 4002, 16094, 65758, 272208, 1139182, 4811807, 20487096, 87832558, 378846620, 1642851797, 7158220968, 31323340342, 137595355130, 606533278416, 2682157911032, 11895267124841, 52895679368820, 235792891885786, 1053475824902774
Offset: 0
Examples
a(2)=2 because one diagonal may be placed 2 ways in the quadrilateral (placing none is not allowed). Generated from Fibonacci polynomials (A011973) and odd self-convolutions of Catalan numbers (A039599): a(0) = 1* 1 = 1. a(1) = 1* 1 = 1. a(2) = 1* 2 + 0* 1/3 = 2. a(3) = 1* 5 + 1* 3/3 = 6. a(4) = 1* 14 + 2* 9/3 + 0* 1/5 = 20. a(5) = 1* 42 + 3* 28/3 + 1* 5/5 = 71. a(6) = 1* 132 + 4* 90/3 + 3* 20/5 + 0* 1/7 = 264. a(7) = 1* 429 + 5* 297/3 + 6* 75/5 + 1* 7/7 = 1015. a(8) = 1*1430 + 6*1001/3 + 10*275/5 + 4*35/7 + 0*1/9 = 4002. This process is equivalent to the formula: a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1,n-2k-1)*C(2n-2k,n-2k)/(n+1). The odd self-convolutions of Catalan numbers begin: A000108^1: {1, 1, 2, 5, 14, 42, 132, 329, 1430, ...} A000108^3: {1, 3, 9, 28, 90, 297, 1001, ...} A000108^5: {1, 5, 20, 75, 275, ...} A000108^7: {1, 7, 35, ...}
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Paul Barry, Riordan arrays, generalized Narayana triangles, and series reversion, Linear Algebra and its Applications, 491 (2016) 343-385.
- D. Birmajer, J. B. Gil, M. D. Weiner, Colored partitions of a convex polygon by noncrossing diagonals, arXiv preprint arXiv:1503.05242 [math.CO], 2015.
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020.
- S. Feretic and D. Svrtan, Combinatorics of diagonally convex directed polyominoes, Discrete Math. 157 (1996), 147-168.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, arXiv:1903.08946 [math.CO], 2019.
- Alice L. L. Gao, Sergey Kitaev, On partially ordered patterns of length 4 and 5 in permutations, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.
- Nancy S. S. Gu, Nelson Y. Li, and Toufik Mansour, 2-Binary trees: bijections and related issues, Discr. Math., 308 (2008), 1209-1221.
- Mizera, Sebastian Combinatorics and topology of Kawai-Lewellen-Tye relations J. High Energy Phys. 2017, No. 8, Paper No. 97, 54 p. (2017).
- L. Smiley, Even-gon reference
- L. Smiley, Variants of Schroeder Dissections, arXiv:math/9907057 [math.CO], 1999.
- Index entries for reversions of series
Programs
-
Maple
Order := 20; solve(series((A-A^2-A^3)/(1-A^2),A)=x,A);
-
Mathematica
a[n_] := (2^n*(2n-1)!!* HypergeometricPFQ[{1/2-n/2, 1/2-n/2, 1-n/2, -n/2}, {1/2-n, 1-n, -n}, -4])/(n! + n*n!); Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Jul 25 2011, after Paul D. Hanna *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,sum(k=0,n, binomial(k+m-1,k)*binomial(2*k+2*m,m)*x^(2*k+m+1)/(2*k+m+1))),n)}
-
PARI
{a(n)=if(n==0,1,sum(k=0,(n-1)\2,binomial(n-k-1,k)*binomial(2*n-2*k,n))/(n+1))} \\ Paul D. Hanna, Dec 15 2004
Formula
G.f. satisfies: A(x) = x + A(x)^2/(1-A(x)^2); by Lagrange Inversion: A(x) = x + Sum_{n>=0} d^n/dx^n (x^2/(1-x^2))^(n+1)/(n+1)!, or: A(x) = Sum_{n>=0} Sum_{k>=n} C(k-1, k-n)*(2*k)!/(2*k-n+1)!*x^(2*k-n+1)/n!. - Paul D. Hanna, Mar 24 2004
a(n) = Sum_{k=0..floor((n-1)/2)} C(n-k-1, k)*C(2*n-2*k, n)/(n+1) for n > 0, with a(0)=1. - Paul D. Hanna, Dec 15 2004
D-finite with recurrence 5*n*(n+1)*(91*n^2 - 367*n + 348)*a(n) = 12*n*(182*n^3 - 825*n^2 + 1053*n - 328)*a(n-1) - 4*(91*n^4 - 549*n^3 + 971*n^2 - 453*n - 108)*a(n-2) + 6*(n-3)*(182*n^3 - 825*n^2 + 1092*n - 384)*a(n-3) - 4*(n-4)*(n-3)*(91*n^2 - 185*n + 72)*a(n-4). - Vaclav Kotesovec, Jul 29 2013
Lim_{n->infinity} a(n)^(1/n) = z, where z = 4.730576939379622... is the root of the equation 4 - 12*z + 4*z^2 - 24*z^3 + 5*z^4 = 0. - Vaclav Kotesovec, Jul 29 2013
Extensions
More terms from Paul D. Hanna, Dec 15 2004
Comments