A049218 Triangle T(n,k) of arctangent numbers: expansion of arctan(x)^n/n!.
1, 0, 1, -2, 0, 1, 0, -8, 0, 1, 24, 0, -20, 0, 1, 0, 184, 0, -40, 0, 1, -720, 0, 784, 0, -70, 0, 1, 0, -8448, 0, 2464, 0, -112, 0, 1, 40320, 0, -52352, 0, 6384, 0, -168, 0, 1, 0, 648576, 0, -229760, 0, 14448, 0, -240, 0, 1, -3628800, 0, 5360256, 0, -804320, 0, 29568, 0, -330, 0, 1
Offset: 1
Examples
Triangle begins: 1; 0, 1; -2, 0, 1; 0, -8, 0, 1; 24, 0, -20, 0, 1; 0, 184, 0, -40, 0, 1; ... O.g.f. for fifth subdiagonal: (24*t+16*t^2)/(1-t)^7 = 24*t + 184*t^2 + 784*t^3 + 2404*t^4 + ....
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 260.
Links
- Peter Bala, Diagonals of triangles with generating function exp(t*F(x)).
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
- Kruchinin Vladimir Victorovich, Composition of ordinary generating functions, arXiv:1009.2565 [math.CO], 2010.
- Eric Weisstein's World of Mathematics, Mittag-Leffler Polynomial
Crossrefs
Programs
-
Maple
A049218 := proc(n,k)(-1)^((3*n+k)/2) *add(2^(j-k)*n!/j! *stirling1(j,k) *binomial(n-1,j-1),j=k..n) ; end proc: # R. J. Mathar, Feb 14 2011 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> `if`(n::odd, 0, (-1)^(n/2)*n!), 10); # Peter Luschny, Jan 28 2016
-
Mathematica
t[n_, k_] := (-1)^((3n+k)/2)*Sum[ 2^(j-k)*n!/j!*StirlingS1[j, k]*Binomial[n-1, j-1], {j, k, n}]; Flatten[ Table[ t[n, k], {n, 1, 11}, {k, 1, n}]] (* Jean-François Alcover, Dec 06 2011, after Vladimir Kruchinin *) BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len-1}, {k, 0, len-1}]]; rows = 12; M = BellMatrix[If[OddQ[#], 0, (-1)^(#/2)*#!]&, rows]; Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 23 2018, after Peter Luschny *)
-
PARI
T(n,k)=polcoeff(serlaplace(atan(x)^k/k!), n)
Formula
E.g.f.: arctan(x)^k/k! = Sum_{n>=0} T(n, k) x^n/n!.
T(n,k) = ((-1)^((3*n+k)/2)*n!/2^k)*Sum_{i=k..n} 2^i*binomial(n-1,i-1)*Stirling1(i,k)/i!. - Vladimir Kruchinin, Feb 11 2011
E.g.f.: exp(t*arctan(x)) = 1 + t*x + t^2*x^2/2! + t*(t^2-2)*x^3/3! + .... The unsigned row polynomials are the Mittag-Leffler polynomials M(n,t/2). See A137513. The compositional inverse (with respect to x) (x-t/2*log((1+x)/(1-x)))^(-1) = x/(1-t) + 2*t/(1-t)^4*x^3/3!+ (24*t+16*t^2)/(1-t)^7*x^5/5! + .... The rational functions in t generate the (unsigned) diagonals of the table. See the Bala link. - Peter Bala, Dec 04 2011
Extensions
Additional comments from Michael Somos
Comments