A049282 Primes p such that both p-2 and p+2 are squarefree.
3, 5, 13, 17, 19, 31, 37, 41, 53, 59, 67, 71, 89, 103, 107, 109, 113, 131, 139, 157, 163, 179, 181, 193, 197, 199, 211, 229, 233, 239, 251, 257, 269, 271, 283, 293, 307, 311, 337, 347, 379, 383, 397, 401, 409, 419, 431, 433, 449, 463, 467, 487, 491, 499, 503
Offset: 1
Keywords
Examples
37 is here because neither 37+2 nor 37-2 is divisible by squares.
Links
- John Cerkan, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): A049282:=n->`if`(isprime(n) and issqrfree(n-2) and issqrfree(n+2), n, NULL): seq(A049282(n), n=1..10^3); # Wesley Ivan Hurt, Jun 25 2016
-
Mathematica
lst={}; Do[p=Prime[n]; If[SquareFreeQ[p-2]&&SquareFreeQ[p+2], AppendTo[lst,p]], {n,6!}]; lst (* Vladimir Joseph Stephan Orlovsky, Dec 20 2008 *) Select[Prime[Range[100]],AllTrue[#+{2,-2},SquareFreeQ]&] (* Harvey P. Dale, Apr 18 2025 *)
-
PARI
lista(nn) = forprime(p=2, nn, if (issquarefree(p-2) && issquarefree(p+2), print1(p, ", "))); \\ Michel Marcus, Jun 22 2016