A049287 Number of nonisomorphic circulant graphs, i.e., undirected Cayley graphs for the cyclic group of order n.
1, 2, 2, 4, 3, 8, 4, 12, 8, 20, 8, 48, 14, 48, 44, 84, 36, 192, 60, 336, 200, 416, 188, 1312, 423, 1400, 928, 3104, 1182, 8768, 2192, 8364, 6768, 16460, 11144, 46784, 14602, 58288, 44424, 136128, 52488, 355200, 99880, 432576, 351424, 762608, 364724, 2122944, 798952, 3356408
Offset: 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..70
- V. Gatt, On the Enumeration of Circulant Graphs of Prime-Power Order: the case of p^3, arXiv:1703.06038 [math.CO], 2017.
- V. A. Liskovets, Some identities for enumerators of circulant graphs, arXiv:math/0104131 [math.CO], 2001; J. Alg. Comb. 18 (2003) 189.
- V. A. Liskovets and R. Poeschel, On the enumeration of circulant graphs of prime-power and squarefree orders.
- Brendan McKay, Nauty home page.
- R. Poeschel, Publications.
- Eric Weisstein's World of Mathematics, Circulant Graph.
- Eric Weisstein's World of Mathematics, Circulant Matrix.
Programs
-
Mathematica
CountDistinct /@ Table[CanonicalGraph[CirculantGraph[n, #]] & /@ Subsets[Range[Floor[n/2]]], {n, 25}] (* Eric W. Weisstein, May 13 2017 *)
Formula
Extensions
a(48)-a(50) from Andrew Howroyd, Apr 29 2017
Comments