A276150 Sum of digits when n is written in primorial base (A049345); minimal number of primorials (A002110) that add to n.
0, 1, 1, 2, 2, 3, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 1, 2, 2, 3, 3, 4, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 2, 3, 3, 4, 4, 5, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 3, 4, 4, 5, 5, 6, 4, 5, 5, 6, 6, 7, 5, 6, 6, 7, 7, 8, 6, 7, 7, 8, 8, 9, 7, 8, 8, 9, 9, 10, 4
Offset: 0
Examples
For n=24, which is "400" in primorial base (as 24 = 4*(3*2*1) + 0*(2*1) + 0*1, see A049345), the sum of digits is 4, thus a(24) = 4.
Links
Crossrefs
Cf. A000120, A001222, A002110, A049345, A053589, A235168, A260188, A267263, A276084, A276086, A276151, A277022, A278226, A283477, A319713, A319715 (inverse Möbius transform), A321683, A324342, A324382, A324383, A324386, A324387, A371091, A373605, A373606, A373607.
Cf. A333426 [k such that a(k)|k], A339215 [numbers not of the form x+a(x) for any x], A358977 [k such that gcd(k, a(k)) = 1].
Differs from analogous A034968 for the first time at n=24.
Programs
-
Mathematica
nn = 120; b = MixedRadix[Reverse@ Prime@ NestWhileList[# + 1 &, 1, Times @@ Prime@ Range[# + 1] <= nn &]]; Table[Total@ IntegerDigits[n, b], {n, 0, nn}] (* Version 10.2, or *) nn = 120; f[n_] := Block[{a = {{0, n}}}, Do[AppendTo[a, {First@ #, Last@ #} &@ QuotientRemainder[a[[-1, -1]], Times @@ Prime@ Range[# - i]]], {i, 0, #}] &@ NestWhile[# + 1 &, 0, Times @@ Prime@ Range[# + 1] <= n &]; Rest[a][[All, 1]]]; Table[Total@ f@ n, {n, 0, 120}] (* Michael De Vlieger, Aug 26 2016 *)
-
PARI
A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; \\ Antti Karttunen, Feb 27 2019
-
Python
from sympy import prime, primefactors def Omega(n): return 0 if n==1 else Omega(n//primefactors(n)[0]) + 1 def a276086(n): i=0 m=pr=1 while n>0: i+=1 N=prime(i)*pr if n%N!=0: m*=(prime(i)**((n%N)/pr)) n-=n%N pr=N return m def a(n): return Omega(a276086(n)) print([a(n) for n in range(201)]) # Indranil Ghosh, Jun 23 2017
Formula
or for n >= 1: a(n) = 1 + a(n-A260188(n)).
Other identities and observations. For all n >= 0:
From Antti Karttunen, Feb 27 2019: (Start)
(End)
Comments