A031443
Digitally balanced numbers: positive numbers that in base 2 have the same number of 0's as 1's.
Original entry on oeis.org
2, 9, 10, 12, 35, 37, 38, 41, 42, 44, 49, 50, 52, 56, 135, 139, 141, 142, 147, 149, 150, 153, 154, 156, 163, 165, 166, 169, 170, 172, 177, 178, 180, 184, 195, 197, 198, 201, 202, 204, 209, 210, 212, 216, 225, 226, 228, 232, 240, 527, 535, 539, 541, 542, 551
Offset: 1
9 is a term because '1001' contains 2 '0's and 2 '1's.
- Reikku Kulon, Table of n, a(n) for n = 1..10000
- Jason Bell, Thomas F. Lidbetter and Jeffrey Shallit, Additive number theory via approximation by regular languages, International Journal of Foundations of Computer Science, Vol. 31, No. 6 (2020), pp. 667-687; arXiv preprint, arXiv:1804.07996 [cs.FL], 2018.
- Thomas Finn Lidbetter, Counting, Adding, and Regular Languages, Master's Thesis, University of Waterloo, Ontario, Canada, 2018.
- Reinhard Zumkeller, Haskell Programs for Binary Digitally Balanced Numbers.
- Index entries for sequences related to binary expansion of n
Cf.
A049354-
A049360,
A000120,
A001316,
A006519,
A023416,
A070939,
A144777,
A145057,
A145058,
A145059,
A145060,
A144912,
A145037,
A191292,
A090050,
A014486,
A061854,
A037861,
A079309.
Terms of binary width n are enumerated by
A001700.
-
-- See link, showing that Ulrich Schimkes formula provides a very efficient algorithm. Reinhard Zumkeller, Jun 15 2011
-
[ n: n in [2..250] | Multiplicity({* z: z in Intseq(n,2) *}, 0) eq &+Intseq(n,2) ]; // Bruno Berselli, Jun 07 2011
-
a:=proc(n) local nn, n1, n0: nn:=convert(n,base,2): n1:=add(nn[i],i=1..nops(nn)): n0:=nops(nn)-n1: if n0=n1 then n else end if end proc: seq(a(n), n = 1..240); # Emeric Deutsch, Jul 31 2008
-
Select[Range[250],DigitCount[#,2,1]==DigitCount[#,2,0]&] (* Harvey P. Dale, Jul 22 2013 *)
FromDigits[#,2]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{},2n,{1,0}],{n,5}],1],?(#[[1]]==0&)]//Sort (* _Harvey P. Dale, May 30 2016 *)
-
for(n=1,100,b=binary(n); l=length(b); if(sum(i=1,l, component(b,i))==l/2,print1(n,",")))
-
is(n)=hammingweight(n)==hammingweight(bitneg(n,#binary(n))) \\ Charles R Greathouse IV, Mar 29 2013
-
is(n)=2*hammingweight(n)==exponent(n)+1 \\ Charles R Greathouse IV, Apr 18 2020
-
for my $half ( 1 .. 4 ) {
my $N = 2 * $half; # only even widths apply
my $vector = (1 << ($N-1)) | ((1 << ($N/2-1)) - 1); # first key
my $n = 1; $n *= $_ for 2 .. $N; # N!
my $d = 1; $d *= $_ for 2 .. $N/2; # (N/2)!
for (1 .. $n/($d*$d*2)) {
print "$vector, ";
my ($v, $d) = ($vector, 0);
until ($v & 1 or !$v) { $d = ($d << 1)|1; $v >>= 1 }
$vector += $d + 1 + (($v ^ ($v + 1)) >> 2); # next key
}
} # Ruud H.G. van Tol, Mar 30 2014
-
from sympy.utilities.iterables import multiset_permutations
A031443_list = [int('1'+''.join(p),2) for n in range(1,10) for p in multiset_permutations('0'*n+'1'*(n-1))] # Chai Wah Wu, Nov 15 2019
A049354
Digitally balanced numbers in base 3: equal numbers of 0's, 1's, 2's.
Original entry on oeis.org
11, 15, 19, 21, 260, 266, 268, 278, 290, 294, 302, 304, 308, 312, 316, 318, 332, 344, 348, 380, 384, 396, 410, 412, 416, 420, 424, 426, 434, 438, 450, 460, 462, 468, 500, 502, 508, 518, 520, 524, 528, 532, 534, 544, 550, 552, 572, 574, 578, 582, 586, 588, 596
Offset: 1
-
a049354 n = a049354_list !! (n-1)
a049354_list = filter f [1..] where
f n = t0 == a062756 n && t0 == a081603 n where t0 = a077267 n
-- Reinhard Zumkeller, Aug 09 2014
-
Select[Range[600],Length[Union[DigitCount[#,3]]]== 1&]
FromDigits[#,3]&/@DeleteCases[Flatten[Permutations/@Table[PadRight[{},3n,{1,0,2}],{n,3}],1],?(#[[1]]==0&)]//Sort (* _Harvey P. Dale, May 30 2016 *)
Select[Range@5000, Differences@DigitCount[#,3]=={0,0}&] (* Hans Rudolf Widmer, Dec 11 2021 *)
-
from sympy.ntheory import count_digits
def ok(n): c = count_digits(n, 3); return c[0] == c[1] == c[2]
print([k for k in range(600) if ok(k)]) # Michael S. Branicky, Nov 15 2021
A378000
Array read by ascending antidiagonals: T(n,k) is the k-th positive integer that is digitally balanced in base n.
Original entry on oeis.org
2, 11, 9, 75, 15, 10, 694, 78, 19, 12, 8345, 698, 99, 21, 35, 123717, 8350, 714, 108, 260, 37, 2177399, 123723, 8375, 722, 114, 266, 38, 44317196, 2177406, 123759, 8385, 738, 120, 268, 41, 1023456789, 44317204, 2177455, 123771, 8410, 742, 135, 278, 42
Offset: 2
Array begins:
n\k| 1 2 3 4 5 ...
-------------------------------------------------------------------------
2 | 2, 9, 10, 12, 35, ... = A031443
3 | 11, 15, 19, 21, 260, ... = A049354
4 | 75, 78, 99, 108, 114, ... = A049355
5 | 694, 698, 714, 722, 738, ... = A049356
6 | 8345, 8350, 8375, 8385, 8410, ... = A049357
7 | 123717, 123723, 123759, 123771, 123807, ... = A049358
8 | 2177399, 2177406, 2177455, 2177469, 2177518, ... = A049359
9 | 44317196, 44317204, 44317268, 44317284, 44317348, ... = A049360
10 | 1023456789, 1023456798, 1023456879, 1023456897, 1023456978, ...
11 | 26432593615, 26432593625, 26432593725, 26432593745, 26432593845, ...
... | \______ A378001 (main diagonal)
A049363
T(2,4) = 12 = 1100_2 is the fourth number in base 2 containing an equal amount of zeros and ones.
T(9,5) = 44317348 = 102345867_9 is the fifth number in base 9 containing an equal amount of digits from 0 to 8.
-
Module[{dmax = 10, a, m}, a = Table[m = FromDigits[Join[{1, 0}, Range[2, n-1]], n] - 1; Table[While[!SameQ@@DigitCount[++m, n]]; m, dmax-n+2], {n, dmax+1, 2, -1}]; Array[Diagonal[a, # - dmax] &, dmax]]
A145100
Integers in which no more than half the digits (rounded up) are the same, for all bases up to ten.
Original entry on oeis.org
1, 2, 17, 19, 25, 38, 52, 56, 75, 76, 82, 83, 90, 92, 97, 98, 100, 102, 104, 105, 108, 113, 116, 135, 139, 141, 142, 147, 150, 153, 163, 165, 177, 178, 180, 184, 195, 197, 198, 201, 204, 209, 210, 212, 225, 226, 232, 267, 269, 275, 278, 279, 291, 293, 294, 298
Offset: 1
267 in bases [2, 10] is 100001011, 100220, 10023, 2032, 1123, 531, 413, 326, 267. There are five zeros out of nine digits in its binary representation and no more than half the digits in the other bases are identical.
Cf.
A049354,
A049355,
A049356,
A049357,
A049358,
A049359,
A049360,
A049361,
A049362,
A049363,
A049364
A145101
Integers in which no digit occurs more than once more often than any other digit and not all repeated digits are identical, for all bases up to ten.
Original entry on oeis.org
1, 2, 17, 19, 25, 38, 52, 56, 75, 76, 82, 90, 92, 98, 100, 102, 104, 105, 108, 116, 141, 142, 150, 153, 177, 178, 180, 184, 195, 198, 204, 210, 212, 225, 226, 232, 294, 308, 316, 332, 395, 396, 410, 412, 420, 434, 450, 460, 481, 542, 572, 611, 689, 752, 818
Offset: 1
97 is in A145100 but not in this sequence: in base 3 it is 10121 and 1 occurs two times more often than either 0 or 2.
98 is in this sequence: in bases [2, 10] it is 1100010, 10122, 1202, 343, 242, 200, 142, 118, 98.
Cf.
A049354,
A049355,
A049356,
A049357,
A049358,
A049359,
A049360,
A049361,
A049362,
A049363,
A049364,
A145100
A145104
Digitally fair numbers: integers n such that in all bases b = 2..10 no digit occurs more often than ceiling(d/b) times, where d is the number of digits of n in base b.
Original entry on oeis.org
1, 2, 19, 198, 25410896, 31596420, 10601629982, 10753657942, 11264883970, 11543640378, 11553029646, 11665278790, 12034384190, 12038440382, 12366849814, 12519032774, 12781964290, 12971872086, 13156400486
Offset: 1
Cf.
A049354,
A049355,
A049356,
A049357,
A049358,
A049359,
A049360,
A049361,
A049362,
A049363,
A049364,
A145100,
A145101.
Showing 1-6 of 6 results.
Comments