cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049363 a(1) = 1; for n > 1, smallest digitally balanced number in base n.

Original entry on oeis.org

1, 2, 11, 75, 694, 8345, 123717, 2177399, 44317196, 1023456789, 26432593615, 754777787027, 23609224079778, 802772380556705, 29480883458974409, 1162849439785405935, 49030176097150555672, 2200618769387072998445, 104753196945250864004691, 5271200265927977839335179
Offset: 1

Views

Author

Keywords

Comments

A037968(a(n)) = n and A037968(m) < n for m < a(n). - Reinhard Zumkeller, Oct 27 2003
Also smallest pandigital number in base n. - Franklin T. Adams-Watters, Nov 15 2006

Examples

			a(6) = 102345_6 = 1*6^5 + 2*6^3 + 3*6^2 + 4*6^1 + 5*6^0 = 8345.
		

Crossrefs

Column k=1 of A061845 and A378000 (for n>1).

Programs

  • Haskell
    a049363 n = foldl (\v d -> n * v + d) 0 (1 : 0 : [2..n-1])
    -- Reinhard Zumkeller, Apr 04 2012
    
  • Maple
    a:= n-> n^(n-1)+add((n-i)*n^(i-1), i=1..n-2):
    seq(a(n), n=1..23);  # Alois P. Heinz, May 02 2020
  • Mathematica
    Table[FromDigits[Join[{1,0},Range[2,n-1]],n],{n,20}] (* Harvey P. Dale, Oct 12 2012 *)
  • PARI
    A049363(n)=n^(n-1)+sum(i=1,n-2,n^(i-1)*(n-i))  \\ M. F. Hasler, Jan 10 2012
    
  • PARI
    A049363(n)=if(n>1,(n^n-n)/(n-1)^2+n^(n-2)*(n-1)-1,1)  \\ M. F. Hasler, Jan 12 2012
    
  • Python
    def A049363(n): return (n**n-n)//(n-1)**2+n**(n-2)*(n-1)-1 if n>1 else 1 # Chai Wah Wu, Mar 13 2024

Formula

a(n) = (102345....n-1) in base n. - Ulrich Schimke (ulrschimke(AT)aol.com)
For n > 1, a(n) = (n^n-n)/(n-1)^2 + n^(n-2)*(n-1) - 1 = A023811(n) + A053506(n). - Franklin T. Adams-Watters, Nov 15 2006
a(n) = n^(n-1) + Sum_{m=2..n-1} m * n^(n - 1 - m). - Alexander R. Povolotsky, Sep 18 2022

Extensions

More terms from Ulrich Schimke (ulrschimke(AT)aol.com)