cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A239343 Numbers n such that n^5+5 is prime.

Original entry on oeis.org

0, 2, 36, 42, 56, 72, 98, 122, 134, 156, 162, 182, 212, 302, 338, 386, 486, 492, 576, 642, 666, 672, 698, 708, 722, 734, 782, 828, 846, 878, 882, 888, 896, 938, 962, 974, 986, 992, 1052, 1062, 1104, 1106, 1148, 1182, 1224, 1244, 1266, 1284, 1304, 1338, 1394
Offset: 1

Views

Author

Derek Orr, Mar 16 2014

Keywords

Comments

Note that all numbers in this sequence are even.
There is no sequence "Numbers n such that n^4+4 is prime" because of the factorization n^4 + 4 = (n^2 + 2n + 2)*(n^2 - 2n + 2). - Michael B. Porter, based on observation by Derek Orr, Mar 17 2014

Examples

			2^5+5 = 37 is prime. Thus, 2 is a member of this sequence.
36^5+5 = 60466181 is prime. Thus, 36 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[0,1500],PrimeQ[#^5+5]&] (* Harvey P. Dale, Feb 03 2015 *)
  • PARI
    is(n)=isprime(n^5+5) \\ Charles R Greathouse IV, Jun 06 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**5+5)}
    

A239345 Numbers n such that n^8+8 is prime.

Original entry on oeis.org

3, 33, 105, 129, 165, 201, 231, 351, 363, 393, 447, 543, 687, 861, 951, 1107, 1149, 1227, 1257, 1269, 1293, 1359, 1389, 1515, 1557, 1605, 1647, 1689, 1761, 1803, 1815, 1941, 1977, 2073, 2127, 2145, 2163, 2289, 2355, 2415, 2445, 2481, 2571, 2607, 2619, 2775, 2811, 2859, 2973, 3141, 3171, 3321, 3327, 3333, 3393, 3471, 3501, 3513
Offset: 1

Views

Author

Derek Orr, Mar 16 2014

Keywords

Comments

Note that all the numbers in this sequence are odd.

Examples

			3^8+8 = 6569 is prime. Thus, 3 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,3600,2],PrimeQ[#^8+8]&] (* Harvey P. Dale, Apr 20 2015 *)
  • PARI
    is(n)=isprime(n^8+8) \\ Charles R Greathouse IV, Jun 06 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**8+8)}
    

A239346 Numbers n such that n^9+9 is prime.

Original entry on oeis.org

2, 4, 10, 20, 40, 98, 100, 118, 122, 134, 140, 164, 190, 262, 272, 362, 400, 410, 494, 592, 602, 632, 638, 664, 830, 860, 862, 880, 938, 944, 962, 1120, 1148, 1162, 1202, 1288, 1340, 1360, 1408, 1498, 1594, 1642, 1772, 1802, 1840, 1870, 1874, 1882, 1960, 2078, 2092, 2158, 2170, 2188, 2348, 2368, 2462, 2474, 2482, 2488, 2498
Offset: 1

Views

Author

Derek Orr, Mar 16 2014

Keywords

Comments

Note that all numbers in this sequence are even.

Examples

			2^9+9 = 521 is prime. Thus, 2 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    is(n)=isprime(n^9+9) \\ Charles R Greathouse IV, Jun 06 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**9+9)}
    

A239347 Numbers n such that n^10+10 is prime.

Original entry on oeis.org

1, 539, 583, 1023, 1903, 2277, 2893, 3047, 4433, 4587, 4983, 5181, 6567, 7271, 7359, 10857, 10989, 11341, 12221, 12507, 13167, 13277, 13453, 13739, 14443, 14729, 17347, 17919, 17941, 18381, 19151, 19437, 19481, 21131, 21197, 21307, 22561, 23331, 24871, 25003, 25289, 27643, 28391, 29161, 29469, 31339, 33077, 35057, 36597
Offset: 1

Views

Author

Derek Orr, Mar 16 2014

Keywords

Comments

Note that all numbers in this sequence are odd.

Examples

			1^10+10 = 11 is prime. Thus, 1 is a member of this sequence.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[1,40001,2],PrimeQ[#^10+10]&] (* Harvey P. Dale, Nov 13 2021 *)
  • PARI
    is(n)=isprime(n^10+10) \\ Charles R Greathouse IV, Jun 06 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**5) if isprime(n**10+10)}
    

A073598 Numbers n such that n^3 + 5 is prime.

Original entry on oeis.org

2, 12, 14, 24, 26, 38, 42, 48, 56, 66, 78, 86, 92, 104, 116, 126, 138, 146, 164, 186, 192, 194, 198, 224, 242, 264, 276, 296, 324, 332, 386, 438, 488, 494, 498, 518, 524, 566, 576, 582, 588, 594, 596, 632, 684, 696, 698, 714, 716, 722, 728, 738, 758, 762, 806
Offset: 1

Views

Author

Zak Seidov, Sep 01 2002

Keywords

Comments

For n^3+2 prime see A067200. For n^3+3 prime see A049441.

Crossrefs

Programs

  • Magma
    [n: n in [1..900] | IsPrime(n^3 + 5)]; // Vincenzo Librandi, Sep 30 2012
    
  • Mathematica
    Select[ Range[ 950 ], PrimeQ[ #^3+5 ] & ]
  • PARI
    is(n)=isprime(n^3+5) \\ Charles R Greathouse IV, Jun 12 2017

A239344 Numbers n such that n^7+7 is prime.

Original entry on oeis.org

0, 16, 48, 66, 76, 94, 114, 120, 214, 216, 270, 346, 454, 496, 516, 594, 598, 606, 628, 730, 780, 786, 808, 936, 948, 1030, 1044, 1104, 1168, 1248, 1258, 1270, 1276, 1396, 1474, 1506, 1548, 1594, 1728, 1746, 1830, 1870, 1900, 1908, 1914, 1936, 1968, 2040, 2070, 2104, 2118, 2136, 2158, 2278, 2320, 2376, 2518, 2586, 2610, 2736
Offset: 1

Views

Author

Derek Orr, Mar 16 2014

Keywords

Comments

Note that all numbers in this sequence are even.

Examples

			16^7+7 = 268435463 is prime. Thus, 16 is a member of this sequence.
		

Crossrefs

Programs

  • PARI
    is(n)=isprime(n^7+7) \\ Charles R Greathouse IV, Jun 13 2017
  • Python
    import sympy
    from sympy import isprime
    {print(n) for n in range(10**4) if isprime(n**7+7)}
    

A146480 Numbers k with the property that p = 2k + 1 and q = (2k)^3 + 3 are both primes.

Original entry on oeis.org

1, 2, 8, 11, 26, 50, 53, 83, 95, 140, 215, 233, 251, 308, 341, 350, 380, 440, 443, 491, 590, 641, 893, 935, 938, 953, 956, 986, 998, 1040, 1055, 1103, 1106, 1220, 1295, 1430, 1451, 1478, 1505, 1511, 1568, 1583, 1628, 1778, 1808, 1898, 1910, 1916, 1958, 2006
Offset: 1

Views

Author

Zak Seidov, Oct 30 2008

Keywords

Comments

Intersection of A005097 with the sequence of halved terms of A049441. - R. J. Mathar, Nov 05 2008

Examples

			{n, p, q}: {1, 3, 11}, {2, 5, 67}, {8, 17, 4099}, {11, 23, 10651}, {26, 53, 140611}, {50, 101, 1000003}, {53, 107, 1191019}, {83, 167, 4574299}, {95, 191, 6859003}.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..10000]|IsPrime((2*n)+1) and IsPrime((2*n)^3+3)] // Vincenzo Librandi, Dec 13 2010
Showing 1-7 of 7 results.