A049444 Generalized Stirling number triangle of first kind.
1, -2, 1, 6, -5, 1, -24, 26, -9, 1, 120, -154, 71, -14, 1, -720, 1044, -580, 155, -20, 1, 5040, -8028, 5104, -1665, 295, -27, 1, -40320, 69264, -48860, 18424, -4025, 511, -35, 1, 362880, -663696, 509004, -214676, 54649, -8624, 826, -44, 1, -3628800, 6999840, -5753736
Offset: 0
Examples
The Triangle begins: n\k 0 1 2 3 4 5 6 7 8 9 ... 0: 1 1: -2 1 2: 6 -5 1 3: -24 26 -9 1 4: 120 -154 71 -14 1 5 -720 1044 -580 155 -20 1 6: 5040 -8028 5104 -1665 295 -27 1 7: -40320 69264 -48860 18424 -4025 511 -35 1 8: 362880 -663696 509004 -214676 54649 -8624 826 -44 9: -3628800 6999840 -5753736 2655764 -761166 140889 -16884 1266 -54 1 ... [reformatted by _Wolfdieter Lang_, Nov 21 2022]
References
- Y. Manin, Frobenius Manifolds, Quantum Cohomology and Moduli Spaces, American Math. Soc. Colloquium Publications Vol. 47, 1999. [From Tom Copeland, Jun 29 2008]
- S. Roman, The Umbral Calculus, Academic Press, 1984 (also Dover Publications, 2005).
Links
- Reinhard Zumkeller, Rows n = 0..125 of triangle, flattened
- E. Getzler, Operads and moduli spaces of genus 0 Riemann surfaces, arXiv:alg-geom/9411004, 1994, (see p. 23, g(x,t)). [From _Tom Copeland_, Dec 11 2011]
- T. Hyde and J. Lagarias Polynomial splitting measures and cohomology of the pure braid group, arXiv preprint arXiv:1604.05359 [math.RT], 2016.
- Y. Manin, Generating functions in algebraic geometry and sums over trees, arXiv:alg-geom/9407005, 1994, (Eqn. 0.7 and 1.7). [From _Tom Copeland_, Dec 10 2011]
- D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
- R. Murri, Fatgraph Algorithms and the Homology of the Kontsevich Complex, arXiv:1202.1820 [math.AG], 2012, (see Table 1, p. 3). [From _Tom Copeland_, Sep 18 2012]
Crossrefs
Programs
-
Haskell
a049444 n k = a049444_tabl !! n !! k a049444_row n = a049444_tabl !! n a049444_tabl = map fst $ iterate (\(row, i) -> (zipWith (-) ([0] ++ row) $ map (* i) (row ++ [0]), i + 1)) ([1], 2) -- Reinhard Zumkeller, Mar 11 2014
-
Maple
A049444_row := proc(n) local k,i; add(add(Stirling1(n, n-i), i=0..k)*x^(n-k-1),k=0..n-1); seq(coeff(%,x,k),k=1..n-1) end: seq(print(A049444_row(n)),n=1..7); # Peter Luschny, Sep 18 2011 A049444:= (n, k)-> add((-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k), j=0..n): seq(print(seq(A049444(n, k), k=0..n)), n=0..11); # Mélika Tebni, May 02 2022
-
Mathematica
t[n_, i_] = Sum[(-1)^k*Binomial[n, k]*(k+1)!*StirlingS1[n-k, i], {k, 0, n-i}]; Flatten[Table[t[n, i], {n, 0, 9}, {i, 0, n}]] [[1 ;; 48]] (* Jean-François Alcover, Apr 29 2011, after Milan Janjic *)
Formula
T(n, k) = T(n-1, k-1) - (n+1)*T(n-1, k), n >= k >= 0; T(n, k) = 0, n < k; T(n, -1) = 0, T(0, 0) = 1.
E.g.f. for k-th column of signed triangle: ((log(1+x))^k)/(k!*(1+x)^2).
Triangle (signed) = [-2, -1, -3, -2, -4, -3, -5, -4, -6, -5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, ...]; triangle (unsigned) = [2, 1, 3, 2, 4, 3, 5, 4, 6, 5, ...] DELTA [1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...], where DELTA is Deléham's operator defined in A084938 (unsigned version in A143491).
E.g.f.: (1 + x)^(y-2). - Vladeta Jovovic, May 17 2004 [For row polynomials s(n, y)]
With P(n, t) = Sum_{j=0..n-2} T(n-2,j) * t^j and P(1, t) = -1 and P(0, t) = 1, then G(x, t) = -1 + exp[P(.,t)*x] = [(1+x)^t - 1 - t^2 * x] / [t(t-1)], whose compositional inverse in x about 0 is given in A074060. G(x, 0) = -log(1+x) and G(x, 1) = (1+x) log(1+x) - 2x. G(x, q^2) occurs in formulas on pages 194-196 of the Manin reference. - Tom Copeland, Feb 17 2008
If we define f(n,i,a) = Sum_{k=0..n-i} binomial(n,k)*Stirling1(n-k,i)*Product_{j=0..k-1} (-a-j), then T(n,i) = f(n,i,2), for n=1,2,...; i=0..n. - Milan Janjic, Dec 21 2008
T(n, k) = Sum_{j=0..n} (-1)^(n-j)*(n-j+1)!*binomial(n, j)*Stirling1(j, k). - Mélika Tebni, May 02 2022
From Wolfdieter Lang, Nov 24 2022: (Start)
Recurrence for row polynomials {s(n, x)}_{n>=0}: s(0, x) = 1, s(n, x) = (x - 2)*exp(-(d/dx)) s(n-1, x), for n >= 1. This is adapted from the general Sheffer result given by S. Roman, Corollary 3.7.2., p. 50.
Recurrence for column sequence {T(n, k)}{n>=k}: T(n, n) = 1, T(n, k) = (n!/(n-k))*Sum{j=k..n-1} (1/j!)*(a(n-1-j) + k*beta(n-1-j))*T(n-1, k), for k >= 0, where alpha = repeat(-2, 2) and beta(n) = [x^n] (d/dx)log(log(x)/x) = (-1)^(n+1)*A002208(n+1)/A002209(n+1), for n >= 0. This is the adapted Boas-Buck recurrence, also given in Rainville, Theorem 50., p. 141, For the references and a comment see A046521. (End)
Extensions
Second formula corrected by Philippe Deléham, Nov 09 2008
Comments