A049533 Numbers k such that k^2+1 is squarefree.
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1
Keywords
Examples
10 is a member because 10^2 + 1 = 100 + 1 = 101 is squarefree. Reasons why certain numbers are excluded: 7^2+1 = 2*5^2, 18^2+1 = 13*5^2, 32^2+1 = 41*5^2, 38^2+1 = 5*17^2, 41^2+1 = 2*29^2, 43^2+1 = 74*5^2, 57^2+1 = 130*5^2, 82^2+1 = 269*5^2. - Neven Juric, Oct 06 2008
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- T. Estermann, Einige Sätze über quadratfreie Zahlen, Math. Ann. 105 (1931), pp. 653-662.
- D. R. Heath-Brown, Square-free values of n^2 + 1, Acta Arithmetica 155:1 (2012), pp. 1-13; arXiv:1010.6217 [math.NT], 2010-2012.
Programs
-
Magma
[ n: n in [1..100] | IsSquarefree(n^2+1) ]; // Vincenzo Librandi, Dec 25 2010
-
Mathematica
Select[Range@ 80, SquareFreeQ[#^2 + 1] &] (* Michael De Vlieger, Aug 09 2017 *)
-
PARI
isok(n) = issquarefree(n^2+1); \\ Michel Marcus, Feb 09 2016
Formula
Numbers k such that A059592(k) = 1. - Reinhard Zumkeller, Nov 08 2006
Comments