cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049533 Numbers k such that k^2+1 is squarefree.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 39, 40, 42, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 69, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80
Offset: 1

Views

Author

Keywords

Comments

Estermann proved that a(n) ~ kn with k = 1.117...; more precisely, there are cx + O(x^(2/3) log x) terms up to x, where c = 1/k = Product (1 - 2/p^2) where the product is over primes p which are 1 mod 4. Heath-Brown improves the error term to O(x^(7/12) log x). - Charles R Greathouse IV, Oct 16 2017, corrected by Amiram Eldar, Jul 08 2020
There are 89489 terms up to 10^5, 894856 terms up to 10^6, 8948417 up to 10^7, 89484102 up to 10^8, and 894841314 up to 10^9. - Charles R Greathouse IV, Nov 26 2017, corrected and extended by Amiram Eldar, Jul 08 2020

Examples

			10 is a member because 10^2 + 1 = 100 + 1 = 101 is squarefree.
Reasons why certain numbers are excluded: 7^2+1 = 2*5^2, 18^2+1 = 13*5^2, 32^2+1 = 41*5^2, 38^2+1 = 5*17^2, 41^2+1 = 2*29^2, 43^2+1 = 74*5^2, 57^2+1 = 130*5^2, 82^2+1 = 269*5^2. - Neven Juric, Oct 06 2008
		

Crossrefs

Complement of A049532.

Programs

  • Magma
    [ n: n in [1..100] | IsSquarefree(n^2+1) ]; // Vincenzo Librandi, Dec 25 2010
    
  • Mathematica
    Select[Range@ 80, SquareFreeQ[#^2 + 1] &] (* Michael De Vlieger, Aug 09 2017 *)
  • PARI
    isok(n) = issquarefree(n^2+1); \\ Michel Marcus, Feb 09 2016

Formula

Numbers k such that A059592(k) = 1. - Reinhard Zumkeller, Nov 08 2006