cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A335963 Decimal expansion of Product_{p prime, p == 1 (mod 4)} (1 - 2/p^2).

Original entry on oeis.org

8, 9, 4, 8, 4, 1, 2, 2, 4, 5, 6, 2, 4, 8, 8, 1, 7, 0, 7, 2, 5, 6, 6, 1, 5, 0, 6, 9, 0, 8, 4, 3, 7, 3, 2, 1, 9, 8, 7, 5, 4, 7, 8, 0, 8, 9, 2, 0, 7, 1, 8, 9, 7, 2, 6, 0, 1, 7, 9, 9, 4, 2, 7, 6, 1, 6, 5, 6, 3, 8, 9, 2, 2, 1, 2, 0, 9, 1, 5, 5, 0, 2, 8, 8, 5, 9, 4, 2, 9, 1, 0, 5, 3, 9, 5, 8, 9, 1, 0, 8, 0, 0, 3, 3, 2, 2
Offset: 0

Views

Author

Amiram Eldar, Jul 01 2020

Keywords

Comments

The asymptotic density of the numbers k such that k^2+1 is squarefree (A049533) (Estermann, 1931).
The constant c in Sum_{k=0..n} phi(k^2 + 1) = A333170(n) ~ (1/4)*c*n^3 (Finch, 2018).
The constant c in Sum_{k=0..n} phi(k^2 + 1)/(k^2 + 1) = (3/4)*c*n + O(log(n)^2) (Postnikov, 1988).

Examples

			0.89484122456248817072566150690843732198754780892071...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, p. 101.
  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, p. 166.
  • A. G. Postnikov, Introduction to Analytic Number Theory, Amer. Math. Soc., 1988, pp. 192-195.

Crossrefs

Programs

  • Maple
    Digits := 150;
    with(NumberTheory);
    DirichletBeta := proc(s) (Zeta(0, s, 1/4) - Zeta(0, s, 3/4))/4^s; end proc;
    alfa := proc(s) DirichletBeta(s)*Zeta(s)/((1 + 1/2^s)*Zeta(2*s)); end proc;
    beta := proc(s) (1 - 1/2^s)*Zeta(s)/DirichletBeta(s); end proc;
    pzetamod41 := proc(s, terms) 1/2*Sum(Moebius(2*j + 1)*log(alfa((2*j + 1)*s))/(2*j + 1), j = 0..terms); end proc;
    evalf(exp(-Sum(2^t*pzetamod41(2*t, 50)/t, t = 1..200))); # Vaclav Kotesovec, Jan 13 2021
  • Mathematica
    f[p_] := If[Mod[p, 4] == 1, 1 - 2/p^2, 1]; RealDigits[N[Product[f[Prime[i]], {i, 1, 10^6}], 10], 10, 8][[1]] (* for calculating only the first few terms *)
    (* -------------------------------------------------------------------------- *)
    S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
    P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
    Z2[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = 2^w * P[m, n, s*w]/w; sumz = sumz + difz; w++]; Exp[-sumz]);
    $MaxExtraPrecision = 1000; digits = 121; RealDigits[Chop[N[Z2[4, 1, 2], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 15 2021 *)
  • PARI
    f(lim,poly=1-'x-'x^2/2)=prodeulerrat(subst(poly,'x,1/'x^2))*prodeuler(p=2,lim, my(pm2=1./p^2); if(p%4==1,1.-2*pm2,1.)/subst(poly,'x,pm2)) \\ Gets 14 digits at lim=1e9; Charles R Greathouse IV, Aug 10 2022

Formula

Equals 2*A065474/A340617.

Extensions

More digits (from the paper by R. J. Mathar) added by Jon E. Schoenfield, Jan 12 2021
More digits from Vaclav Kotesovec, Jan 13 2021

A069987 Squarefree numbers of form k^2 + 1.

Original entry on oeis.org

2, 5, 10, 17, 26, 37, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 362, 401, 442, 485, 530, 577, 626, 677, 730, 785, 842, 901, 962, 1090, 1157, 1226, 1297, 1370, 1522, 1601, 1765, 1937, 2026, 2117, 2210, 2305, 2402, 2501, 2602, 2705, 2810, 2917, 3026
Offset: 1

Views

Author

Sharon Sela (sharonsela(AT)hotmail.com), May 01 2002

Keywords

Comments

Heath-Brown (following Estermann) shows that, for any e > 0, there are k sqrt(x) + O(x^{7/24 + e}) members of this sequence up to x, for k = Product(1 - 2/p^2) = 0.8948412245... (A335963) where the product is over primes p = 1 mod 4. - Charles R Greathouse IV, Nov 19 2012, corrected by Amiram Eldar, Jul 08 2020
Integers k for which the period of the continued fraction of sqrt(k) is 1. - Michel Marcus, Apr 12 2019

Crossrefs

Programs

  • Maple
    select(numtheory:-issqrfree, [seq(n^2+1, n=1..100)]); # Robert Israel, Feb 09 2016
  • Mathematica
    Select[ Range[10^4], IntegerQ[ Sqrt[ # - 1]] && Union[ Transpose[ FactorInteger[ # ]] [[2]]] [[ -1]] == 1 &]
    Select[Range[60]^2+1,SquareFreeQ] (* Harvey P. Dale, Mar 21 2013 *)
  • PARI
    for(n=1,100,if(issquarefree(n^2+1),print1(n^2+1,",")))

Formula

a(n) = A049533(n)^2 + 1.

Extensions

Edited and extended by Robert G. Wilson v, Benoit Cloitre and Vladeta Jovovic, May 04 2002

A335962 Numbers k such that k^2 + 1 and k^2 + 2 are both squarefree.

Original entry on oeis.org

1, 2, 3, 6, 8, 9, 10, 11, 12, 15, 16, 17, 20, 21, 25, 26, 27, 28, 29, 30, 33, 34, 35, 36, 37, 39, 42, 44, 45, 46, 47, 48, 51, 52, 53, 54, 55, 56, 60, 61, 62, 64, 65, 66, 69, 72, 73, 74, 75, 78, 79, 80, 81, 83, 84, 87, 88, 89, 90, 91, 92, 96, 97, 98, 100, 101
Offset: 1

Views

Author

Amiram Eldar, Jul 01 2020

Keywords

Comments

Dimitrov (2020) proved that this sequence is infinite and has an asymptotic density Product_{p prime > 2} (1 - ((-1/p) + (-2/p) + 2)/p^2) = 0.67187..., where (a/p) is the Legendre symbol.

Examples

			1 is a term since 1^2 + 1 = 2 and 1^1 + 2 = 3 are both squarefree.
		

Crossrefs

Subsequence of A049533.

Programs

  • Mathematica
    Select[Range[100], And @@ SquareFreeQ /@ (#^2 + {1, 2}) &]

A124895 Triangle read by rows, 1 <= k <= n: T(n,k) = mu(n^2 + k^2) with mu = A008683.

Original entry on oeis.org

-1, -1, 0, 1, -1, 0, -1, 0, 0, 0, 1, -1, 1, -1, 0, -1, 0, 0, 0, -1, 0, 0, -1, 1, 1, 1, 1, 0, 1, 0, -1, 0, -1, 0, -1, 0, 1, 1, 0, -1, 1, 0, -1, 1, 0, -1, 0, -1, 0, 0, 0, -1, 0, -1, 0, 1, 0, -1, -1, 1, -1, -1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, -1, -1, 1, 1, 1, 1, 1, -1, 0, -1, -1, -1, 0, -1, 0, 1, 0, 1, 0, 0, 0, -1, 0, -1, 0, 1, 0, 1, -1, 0, -1, 0, 0, 1, 0, 0, 0, 1, 0, 1, -1, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 12 2006

Keywords

Examples

			Triangle begins:
 -1
 -1,  0
  1, -1,  0
 -1,  0,  0,  0
  1, -1,  1, -1,  0
 -1,  0,  0,  0, -1, 0
  0, -1,  1,  1,  1, 1,  0
  1,  0, -1,  0, -1, 0, -1, 0
  1,  1,  0, -1,  1, 0, -1, 1,  0
 -1,  0, -1,  0,  0, 0, -1, 0, -1, 0
		

Crossrefs

Programs

  • Mathematica
    row[n_] := Table[MoebiusMu[n^2 + k^2], {k, 1, n}]; Array[row, 15] // Flatten (* Amiram Eldar, May 12 2025 *)
  • PARI
    row(n) = vector(n, k, moebius(n^2 + k^2)); \\ Amiram Eldar, May 12 2025

Formula

T(n,k) = A008683(A070216(n,k)).
T(n,1) = A124897(1); T(A049533(n),1) <> 0; T(A049532(n),1) = 0.
T(n,n) = -A000007(n-1).
A124896(n) = Sum_{k=1..n} abs(T(n,k)), row sums of absolute values.

A225856 Primes p such that p^2 + 1 is squarefree.

Original entry on oeis.org

2, 3, 5, 11, 13, 17, 19, 23, 29, 31, 37, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 241, 263, 269, 271, 277, 281, 283, 311, 313, 317, 331, 337
Offset: 1

Views

Author

Rafael Parra Machio, May 18 2013

Keywords

Comments

Primes of the sequence A224718 generating squarefree.

Examples

			23 is a term since 23^2+1 = 530 = 2*5*53, is squarefree.
43 is not a term since 43^2+1 = 1850 = 2*5^2*7, is not squarefree.
		

Crossrefs

Intersection of A000040 and A049533.
Cf. A224718.

Programs

  • Mathematica
    Select[Prime[Range[100]], SquareFreeQ[#^2+1]&]

A268641 Squarefree numbers k such that k^2 + 1 and k^2 - 1 are also squarefree.

Original entry on oeis.org

2, 6, 14, 22, 30, 34, 42, 58, 66, 78, 86, 94, 102, 106, 110, 114, 130, 138, 142, 158, 166, 178, 186, 194, 202, 210, 214, 222, 230, 238, 254, 258, 266, 286, 302, 310, 322, 330, 346, 354, 358, 366, 390, 394, 398, 402, 410, 430, 434, 438, 446, 454, 462, 466, 470, 498
Offset: 1

Views

Author

K. D. Bajpai, Feb 09 2016

Keywords

Comments

All the listed terms are even squarefree numbers.
Subsequence of A039956.

Examples

			a(2) = 6 = 2 * 3: 6^2 + 1 = 37 = 1 * 37; 6^2 - 1 = 35 = 5 * 7; 6, 37, 35 are all squarefree.
		

Crossrefs

Programs

  • Magma
    [n : n in [1..1000]  |  IsSquarefree(n) and IsSquarefree(n^2+1) and IsSquarefree(n^2-1) ];
  • Maple
    select(n -> andmap(issqrfree, [n, n^2+1, n^2-1]), [seq(n, n=2.. 10^3)]);
  • Mathematica
    Select[Range[1000], SquareFreeQ[#] && SquareFreeQ[#^2 + 1] && SquareFreeQ[#^2 - 1] &]
  • PARI
    for(n=2, 1000, issquarefree(n) & issquarefree(n^2 + 1) & issquarefree(n^2 - 1) & print1(n,", "))
    

A381136 a(n) is the number of divisors d of n such that tau(d^(1 + n) + n) = 2^omega(d^(1 + n) + n), where tau = A000005 and omega = A001221.

Original entry on oeis.org

1, 2, 0, 1, 2, 4, 0, 0, 1, 3, 0, 2, 2, 3, 0, 1, 0, 2, 0, 2, 4, 2, 0, 1, 1, 2, 0, 2, 2, 8, 0, 1, 4, 4, 0, 1, 2, 3, 0, 2, 2, 7, 0, 1, 2, 4, 0, 1, 0, 2, 0, 2, 0, 2, 0, 2, 4, 2, 0, 3, 2, 2, 0, 1, 4, 8, 0, 2, 3, 5, 0, 1, 2, 3, 0, 2, 4, 8, 0, 1, 1, 3, 0, 4, 4, 4, 0
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 15 2025

Keywords

Crossrefs

Programs

  • Magma
    [#[d: d in Divisors(n) | #Divisors(d^(1+n)+n) eq 2^#PrimeDivisors(d^(1+n)+n)]: n in [1..50]];
    
  • Mathematica
    Table[Length[Select[Divisors[n],DivisorSigma[0,#^(1+n)+n]==2^PrimeNu[#^(1+n)+n]&]],{n,45}] (* James C. McMahon, Mar 05 2025 *)
  • PARI
    a(n) = sumdiv(n, d, my(f=factor(d^(1 + n) + n)); numdiv(f) == 2^omega(f)); \\ Michel Marcus, Feb 15 2025

Extensions

More terms from Jinyuan Wang, Mar 09 2025

A359749 Numbers k such that k and k+1 do not share a common exponent in their prime factorizations.

Original entry on oeis.org

1, 3, 4, 7, 8, 9, 15, 16, 24, 25, 26, 27, 31, 32, 35, 36, 48, 63, 64, 71, 72, 81, 100, 107, 108, 120, 121, 124, 125, 127, 128, 143, 144, 168, 169, 195, 196, 199, 200, 215, 216, 224, 225, 242, 243, 255, 256, 287, 289, 323, 342, 361, 391, 392, 399, 400, 431, 432, 440
Offset: 1

Views

Author

Amiram Eldar, Jan 13 2023

Keywords

Comments

Either k or k+1 is a powerful number (A001694). Except for k=8, are there terms k such that both k and k+1 are powerful (i.e., terms that are also in A060355)? None of the terms A060355(n) for n = 2..39 is in this sequence.
A002496(k)-1, A078324(k)-1, A078325(k)-1, and A049533(k)^2 are terms for all k >= 1.

Examples

			3 is a term since 3 has the exponent 1 in its prime factorization, and 3 + 1 = 4 = 2^2 has a different exponent in its prime factorization, 2.
		

Crossrefs

Programs

  • Mathematica
    q[n_] := UnsameQ @@ Join @@ (Union[FactorInteger[#][[;; , 2]]]& /@ (n + {0, 1})); Join[{1}, Select[Range[400], q]]
  • PARI
    lista(nmax) = {my(e1 = [], e2); for(n = 2, nmax, e2 = Set(factor(n)[,2]); if(setintersect(e1, e2) == [], print1(n-1, ", ")); e1 = e2); }
Showing 1-8 of 8 results.