A049541 Decimal expansion of 1/Pi.
3, 1, 8, 3, 0, 9, 8, 8, 6, 1, 8, 3, 7, 9, 0, 6, 7, 1, 5, 3, 7, 7, 6, 7, 5, 2, 6, 7, 4, 5, 0, 2, 8, 7, 2, 4, 0, 6, 8, 9, 1, 9, 2, 9, 1, 4, 8, 0, 9, 1, 2, 8, 9, 7, 4, 9, 5, 3, 3, 4, 6, 8, 8, 1, 1, 7, 7, 9, 3, 5, 9, 5, 2, 6, 8, 4, 5, 3, 0, 7, 0, 1, 8, 0, 2, 2, 7, 6, 0, 5, 5, 3, 2, 5, 0, 6, 1, 7, 1
Offset: 0
Examples
0.3183098861837906715377675267450287240689192914809128974953...
References
- J.-P. Delahaye, Pi - die Story (German translation), Birkhäuser, 1999 Baasel, p. 245. French original: Le fascinant nombre Pi, Pour la Science, Paris, 1997.
- C. N. Pickworth, The Slide Rule, 24th Ed., Pitman, London, 1945, p. 53, Gauge Points.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Mohammad K. Azarian, An Expression for Pi, Problem #870, College Mathematics Journal, Vol. 39, No. 1, January 2008, p. 66. Solution appeared in Vol. 40, No. 1, January 2009, pp. 62-64.
- J. Bohr, Ramanujan's Method of Approximating Pi.
- J. Borwein, Ramanujan's Sum.
- Heng Huat Chan, Shaun Cooper, and Wen-Chin Liaw, The Rogers-Ramanujan continued fraction and a quintic iteration for 1/Pi, Proc. Amer. Math. Soc. 135 (2007), 3417-3424.
- D. V. Chudnovsky and G. V. Chudnovsky, The computation of classical constants, Proc. Nati. Acad. Sci. USA, Vol. 86, pp. 8178-8182, November 1989.
- J. Guillera, A New Method to Obtain Series for 1/Pi and 1/Pi^2, Experimental Mathematics, Volume 15, Issue 1, 2006.
- R. Matsumoto, Ramanujan Type Series. [Broken link]
- A. S. Nimbran, Deriving Forsyth-Glaisher type series for 1/π and Catalan's constant by an elementary method, The Mathematics Student, Indian Math. Soc., Vol. 84, Nos. 1-2, Jan.-June (2015), 69-86. [Broken link]
- Eric W. Weisstein, Octahedron.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
MATLAB
1/pi % Altug Alkan, Apr 10 2016
-
Magma
R:= RealField(100); 1/Pi(R); // G. C. Greubel, Aug 21 2018
-
Maple
Digits:=100: evalf(1/Pi); # Wesley Ivan Hurt, Aug 29 2016
-
Mathematica
RealDigits[N[1/Pi, 10, 100]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
-
PARI
1/Pi \\ Charles R Greathouse IV, Jun 16 2011
Formula
Equals (1/(12-16*A002162))*Sum_{n>=0} A002894(n)*H(n)/(A001025(n) * A016754(n-1)), where H(n) denotes the n-th harmonic number. - John M. Campbell, Aug 28 2016
1/Pi = Sum_{m>=0} binomial(2*m, m)^3 * (42*m+5)/(2^(12*m+4)), Ramanujan, from the J.-P. Delahaye reference. - Wolfdieter Lang, Sep 18 2018; corrected by Bernard Schott, Mar 26 2020
1/Pi = 12*Sum_{n >= 0} (-1)^n*((6*n)!/(n!^3*(3*n)!))*(13591409 + 545140134*n)/640320^(3*n + 3/2) [Chudnovsky]. - Sanjar Abrarov, Mar 31 2020
1/Pi = (sqrt(8)/9801) * Sum_{n >= 0} ((4*n)!/((n!)^4)) * (26390*n + 1103)/(396^(4*n)) [Ramanujan, 1914]. - Bernard Schott, Mar 26 2020
Equal Sum_{k>=2} tan(Pi/2^k)/2^k. - Amiram Eldar, Aug 05 2020
Floor((3/8)*Sum_{n>=1} sigma[3](n)*n/exp(Pi*n/(10^((1/5)*k+(1/5))))) mod 10, will give the k-th digit of 1/Pi. - Simon Plouffe, Dec 19 2023
Comments