A049598 12 times triangular numbers.
0, 12, 36, 72, 120, 180, 252, 336, 432, 540, 660, 792, 936, 1092, 1260, 1440, 1632, 1836, 2052, 2280, 2520, 2772, 3036, 3312, 3600, 3900, 4212, 4536, 4872, 5220, 5580, 5952, 6336, 6732, 7140, 7560, 7992, 8436, 8892, 9360, 9840, 10332, 10836, 11352
Offset: 0
Examples
a(1) = 12*1 + 0 = 12; a(2) = 12*2 + 12 = 36; a(3) = 12*3 + 36 = 72.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., Vol. 60 (1996), pp. 959-969.
- Leo Tavares, Illustration: Centroid Stars.
- Eric Weisstein's World of Mathematics, Gear Graph.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Eric Weisstein's World of Mathematics, Wiener Index.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
12 * Accumulate[Range[0, 50]] (* Harvey P. Dale, Feb 05 2013 *) (* Start from Eric W. Weisstein, Sep 08 2017 *) Table[6 n (n + 1), {n, 0, 20}] 12 PolygonalNumber[3, Range[0, 20]] 12 Binomial[Range[20], 2] LinearRecurrence[{3, -3, 1}, {12, 36, 72}, {0, 20}] (* End *)
-
PARI
a(n)=6*n*(n+1) \\ Charles R Greathouse IV, Jun 17 2017
Formula
a(n) = 6*n*(n+1).
G.f.: 12*x/(1-x)^3.
a(n) = 12*A000217(n). - Omar E. Pol, Dec 11 2008
a(n) = 12*n + a(n-1) (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = A003154(n+1) - 1. - Omar E. Pol, Oct 03 2011
a(n) = A032528(2*n+1) - 1. - Adriano Caroli, Jul 19 2013
E.g.f.: 6*x*(x+2)*exp(x). - G. C. Greubel, Aug 23 2017
From Amiram Eldar, Feb 15 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/6.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2)/3 - 1/6. (End)
From Amiram Eldar, Feb 21 2023: (Start)
Product_{n>=1} (1 - 1/a(n)) = -(6/Pi)*cos(sqrt(5/3)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (6/Pi)*cos(Pi/(2*sqrt(3))). (End)
Comments