cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049629 a(n) = (F(6*n+5) - F(6*n+1))/4 = (F(6*n+4) + F(6*n+2))/4, where F = A000045.

Original entry on oeis.org

1, 19, 341, 6119, 109801, 1970299, 35355581, 634430159, 11384387281, 204284540899, 3665737348901, 65778987739319, 1180356041958841, 21180629767519819, 380070979773397901, 6820097006153642399, 122381675130992165281, 2196050055351705332659, 39406519321199703822581
Offset: 0

Views

Author

Keywords

Comments

x(n) := 2*a(n) and y(n) := A007805(n), n >= 0, give all the positive solutions of the Pell equation x^2 - 5*y^2 = -1.
The Gregory V. Richardson formula follows from this. - Wolfdieter Lang, Jun 20 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
2*a(n) = 2 o 2 o ... o 2 (2*n+1 terms). For example, 2 o 2 = 4*sqrt(5) and 2 o 2 o 2 = 2 o 4*sqrt(5) = 38 = 2*a(1). Cf. A084068.
a(n) = U(2*n+1) where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = sqrt(20)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/4)*( (sqrt(5) + 2)^n - (sqrt(5) - 2)^n ). (End)

Examples

			Pell, n=1: (2*19)^2 - 5*17^2 = -1.
		

Crossrefs

Bisection of A001077 divided by 2.
Cf. similar sequences of the type (1/k)*sinh((2*n+1)*arcsinh(k)) listed in A097775.

Programs

  • Magma
    [(Fibonacci(6*n+5) - Fibonacci(6*n+1))/4: n in [0..30]]; // G. C. Greubel, Dec 15 2017
  • Maple
    with(numtheory): with(combinat):
    seq((fibonacci(6*n+5)-fibonacci(6*n+1))/4,n=0..20); # Muniru A Asiru, Mar 25 2018
  • Mathematica
    a[n_] := Simplify[(2 + Sqrt@5)^(2 n - 1) + (2 - Sqrt@5)^(2 n - 1)]/4; Array[a, 16] (* Robert G. Wilson v, Oct 28 2010 *)
  • PARI
    my(x='x+O('x^30)); Vec((1+x)/(1 - 18*x + x^2)) \\ G. C. Greubel, Dec 15 2017
    

Formula

a(n) ~ (1/4)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
For all members x of the sequence, 20*x^2 + 5 is a square. Lim_{n -> oo} a(n)/a(n-1) = 9 + 2*sqrt(20) = 9 + 4*sqrt(5). The 20 can be seen to derive from the statement "20*x^2 + 5 is a square". - Gregory V. Richardson, Oct 12 2002
a(n) = (((9 + 4*sqrt(5))^(n+1) - (9 - 4*sqrt(5))^(n+1)) + ((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n)) / (8*sqrt(5)). - Gregory V. Richardson, Oct 12 2002
From R. J. Mathar, Nov 04 2008: (Start)
G.f.: (1+x)/(1 - 18x + x^2).
a(n) = A049660(n) + A049660(n+1). (End)
a(n) = 18*a(n-1) - a(n-2) for n>1; a(0)=1, a(1)=19. - Philippe Deléham, Nov 17 2008
a(n) = S(n,18) + S(n-1,18) with the Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jun 20 2013
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Fibonacci(6*n + 6 - 2*k) + Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) + Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) - Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) - Fibonacci(2*k + 1) ), for k an arbitrary integer, k != 1.
The aerated sequence (b(n))n>=1 = [1, 0, 19, 0, 341, 0, 6119, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -16, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = (A188378(n)^3 + (A188378(n)-2)^3) / 8. - Altug Alkan, Jan 24 2016
a(n) = sqrt(5 * Fibonacci(3 + 6*n)^2 - 4)/4. - Gerry Martens, Jul 25 2016
a(n) = Lucas(6*n + 3)/4. - Ehren Metcalfe, Feb 18 2017
From Peter Bala, Mar 23 2018: (Start)
a(n) = 1/4*( (sqrt(5) + 2)^(2*n+1) - (sqrt(5) - 2)^(2*n+1) ).
a(n) = 9*a(n-1) + 2*sqrt(5 + 20*a(n-1)^2).
a(n) = (1/2)*sinh((2*n + 1)*arcsinh(2)). (End)
From Peter Bala, May 09 2025: (Start)
a(n)^2 - 18*a(n)*a(n+1) + a(n+1)^2 = 20.
More generally, for real x, a(n+x)^2 - 18*a(n+x)*a(n+x+1) + a(n+x+1)^2 = 20 with a(n) := (((9 + 4*sqrt(5))^(n+1) - (9 - 4*sqrt(5))^(n+1)) + ((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n)) / (8*sqrt(5)) as given above.
Sum_{n >= 1} (-1)^(n+1)/(a(n) - 1/a(n)) = 1/20 (telescoping series).
Product_{n >= 1} ((a(n) + 1)/(a(n) - 1)) = sqrt(5)/2 (telescoping product). (End)