cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 27 results. Next

A001077 Numerators of continued fraction convergents to sqrt(5).

Original entry on oeis.org

1, 2, 9, 38, 161, 682, 2889, 12238, 51841, 219602, 930249, 3940598, 16692641, 70711162, 299537289, 1268860318, 5374978561, 22768774562, 96450076809, 408569081798, 1730726404001, 7331474697802, 31056625195209
Offset: 0

Views

Author

Keywords

Comments

a(2*n+1) with b(2*n+1) := A001076(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = -1.
a(2*n) with b(2*n) := A001076(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 5*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,9) = A023039(n), n >= 0 and a(2*n+1) = 2*S(2*n, 2*sqrt(5)) = A075796(n+1), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
From Greg Dresden, May 21 2023: (Start)
For n >= 2, 8*a(n) is the number of ways to tile this T-shaped figure of length n-1 with four colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 8*a(6) = 23112 different tilings.
_
|| _
|||_|||
|_|
(End)

Examples

			1  2  9  38  161  (A001077)
-, -, -, --, ---, ...
0  1  4  17   72  (A001076)
1 + 2*x + 9*x^2 + 38*x^3 + 161*x^4 + 682*x^5 + 2889*x^6 + 12238*x^7 + ... - _Michael Somos_, Aug 11 2009
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. Thébault, Les Récréations Mathématiques, Gauthier-Villars, Paris, 1952, p. 282.

Crossrefs

Programs

  • Magma
    I:=[1, 2]; [n le 2 select I[n] else 4*Self(n-1) + Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    A001077:=(-1+2*z)/(-1+4*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
    with(combinat): a:=n->fibonacci(n+1, 4)-2*fibonacci(n, 4): seq(a(n), n=0..30); # Zerinvary Lajos, Apr 04 2008
  • Mathematica
    LinearRecurrence[{4, 1}, {1, 2}, 30]
    Join[{1},Numerator[Convergents[Sqrt[5],30]]] (* Harvey P. Dale, Mar 23 2016 *)
    CoefficientList[Series[(1-2*x)/(1-4*x-x^2), {x, 0, 30}], x] (* G. C. Greubel, Dec 19 2017 *)
    LucasL[3*Range[0,30]]/2 (* Rigoberto Florez, Apr 03 2019 *)
    a[ n_] := LucasL[n, 4]/2; (* Michael Somos, Nov 02 2021 *)
  • PARI
    {a(n) = fibonacci(3*n) / 2 + fibonacci(3*n - 1)}; /* Michael Somos, Aug 11 2009 */
    
  • PARI
    a(n)=if(n<2,n+1,my(t=4);for(i=1,n-2,t=4+1/t);numerator(2+1/t)) \\ Charles R Greathouse IV, Dec 05 2011
    
  • PARI
    x='x+O('x^30); Vec((1-2*x)/(1-4*x-x^2)) \\ G. C. Greubel, Dec 19 2017
    
  • Sage
    [lucas_number2(n,4,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, May 14 2009
    

Formula

G.f.: (1-2*x)/(1-4*x-x^2).
a(n) = 4*a(n-1) + a(n-2), a(0)=1, a(1)=2.
a(n) = ((2 + sqrt(5))^n + (2 - sqrt(5))^n)/2.
a(n) = A014448(n)/2.
Limit_{n->infinity} a(n)/a(n-1) = phi^3 = 2 + sqrt(5). - Gregory V. Richardson, Oct 13 2002
a(n) = ((-i)^n)*T(n, 2*i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
Binomial transform of A084057. - Paul Barry, May 10 2003
E.g.f.: exp(2x)cosh(sqrt(5)x). - Paul Barry, May 10 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)*5^k*2^(n-2k). - Paul Barry, Nov 15 2003
a(n) = 4*a(n-1) + a(n-2) when n > 2; a(1) = 1, a(2) = 2. - Alex Vinokur (alexvn(AT)barak-online.net), Oct 25 2004
a(n) = A001076(n+1) - 2*A001076(n) = A097924(n) - A015448(n+1); a(n+1) = A097924(n) + 2*A001076(n) = A097924(n) + 2(A048876(n) - A048875(n)). - Creighton Dement, Mar 19 2005
a(n) = F(3*n)/2 + F(3*n-1) where F() = Fibonacci numbers A000045. - Gerald McGarvey, Apr 28 2007
a(n) = A000032(3*n)/2.
For n >= 1: a(n) = (1/2)*Fibonacci(6*n)/Fibonacci(3*n) and a(n) = integer part of (2 + sqrt(5))^n. - Artur Jasinski, Nov 28 2011
a(n) = Sum_{k=0..n} A201730(n,k)*4^k. - Philippe Deléham, Dec 06 2011
a(n) = A001076(n) + A015448(n). - R. J. Mathar, Jul 06 2012
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(5*k-4)/(x*(5*k+1) - 2/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 27 2013
a(n) is the (1,1)-entry of the matrix W^n with W=[2, sqrt(5); sqrt(5), 2]. - Carmine Suriano, Mar 21 2014
From Rigoberto Florez, Apr 03 2019: (Start)
a(n) = A099919(n) + A049651(n) if n > 0.
a(n) = 1 + Sum_{k=0..n-1} L(3*k + 1) if n >= 0, L(n) = n-th Lucas number (A000032). (End)
From Christopher Hohl, Aug 22 2021: (Start)
For n >= 2, a(2n-1) = A079962(6n-9) + A079962(6n-3).
For n >= 1, a(2n) = sqrt(20*A079962(6n-3)^2 + 1). (End)
a(n) = Sum_{k=0..n-2} A168561(n-2,k)*4^k + 2 * Sum_{k=0..n-1} A168561(n-1,k)*4^k, n>0. - R. J. Mathar, Feb 14 2024
a(n) = 4^n*Sum_{k=0..n} A374439(n, k)*(-1/4)^k. - Peter Luschny, Jul 26 2024
From Peter Bala, Jul 08 2025: (Start)
The following series telescope:
Sum_{n >= 1} 1/(a(n) + 5*(-1)^(n+1)/a(n)) = 3/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = b(n) - b(n+1), where b(n) = (1/4) * (a(n) + a(n-1)) / (a(n)*a(n-1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n) + 5*(-1)^(n+1)/a(n)) = 1/8, since 1/(a(n) + 5*(-1)^(n+1)/a(n)) = c(n) + c(n+1), where c(n) = (1/4) * (a(n) - a(n-1)) / (a(n)*a(n-1)). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A007805 a(n) = Fibonacci(6*n + 3)/2.

Original entry on oeis.org

1, 17, 305, 5473, 98209, 1762289, 31622993, 567451585, 10182505537, 182717648081, 3278735159921, 58834515230497, 1055742538989025, 18944531186571953, 339945818819306129, 6100080207560938369
Offset: 0

Views

Author

Keywords

Comments

Hypotenuse (z) of Pythagorean triples (x,y,z) with |2x-y|=1.
x(n) := 2*A049629(n) and y(n) := a(n), n >= 0, give all positive solutions of the Pell equation x^2 - 5*y^2 = -1. See the Gregory V. Richardson formula, where his x is the y here and A075796(n+1) = x(n). - Wolfdieter Lang, Jun 20 2013
Positive numbers n such that 5*n^2 - 1 is a square (A075796(n+1)^2). - Gregory V. Richardson, Oct 13 2002

Crossrefs

Cf. A000045.
Row 18 of array A094954.
Row 2 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • Haskell
    a007805 = (`div` 2) . a000045 . (* 3) . (+ 1) . (* 2)
    -- Reinhard Zumkeller, Mar 26 2013
    
  • Magma
    I:=[1, 17]; [n le 2 select I[n] else 18*Self(n-1) - Self(n-2): n in [1..30]]; // G. C. Greubel, Dec 19 2017
  • Maple
    seq(combinat:-fibonacci(6*n+3)/2, n=0..30); # Robert Israel, Sep 10 2014
  • Mathematica
    LinearRecurrence[{18, -1}, {1, 17}, 50] (* Sture Sjöstedt, Nov 29 2011 *)
    Table[Fibonacci[6n+3]/2, {n, 0, 20}] (* Harvey P. Dale, Dec 17 2011 *)
    CoefficientList[Series[(1-x)/(1-18*x+x^2), {x, 0, 50}], x] (* G. C. Greubel, Dec 19 2017 *)
  • PARI
    a(n)=fibonacci(6*n+3)/2 \\ Edward Jiang, Sep 09 2014
    
  • PARI
    x='x+O('x^30); Vec((1-x)/(1-18*x+x^2)) \\ G. C. Greubel, Dec 19 2017
    

Formula

G.f.: (1-x)/(1-18*x+x^2).
a(n) = 18*a(n-1) - a(n-2), n > 1, a(0)=1, a(1)=17.
a(n) = A134495(n)/2 = A001076(2n+1).
a(n+1) = 9*a(n) + 4*sqrt(5*a(n)^2-1). - Richard Choulet, Aug 30 2007, Dec 28 2007
a(n) = ((2+sqrt(5))^(2*n+1) - (2-sqrt(5))^(2*n+1))/(2*sqrt(5)). - Dean Hickerson, Dec 09 2002
a(n) ~ (1/10)*sqrt(5)*(sqrt(5) + 2)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
Limit_{n->infinity} a(n)/a(n-1) = 8*phi + 5 = 9 + 4*sqrt(5). - Gregory V. Richardson, Oct 13 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then a(n) = q(n, 16). - Benoit Cloitre, Dec 06 2002
a(n) = 19*a(n-1)- 19*a(n-2) + a(n-3); f(x) = (sqrt(5)/10)*((2+sqrt(5))*(9+4*sqrt(5))^(x-1) - (2-sqrt(5))*(9-4*sqrt(5))^(x-1)). - Antonio Alberto Olivares, May 15 2008
a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). - Antonio Alberto Olivares, Jun 19 2008
a(n) = b(n+1) - b(n), n >= 0, with b(n) := F(6*n)/F(6) = A049660(n). First differences. See the o.g.f.s. - Wolfdieter Lang, 2012
a(n) = S(n,18) - S(n-1,18) with the Chebyshev S-polynomials (A049310). - Wolfdieter Lang, Jun 20 2013
Sum_{n >= 1} 1/( a(n) - 1/a(n) ) = 1/4^2. Compare with A001519 and A097843. - Peter Bala, Nov 29 2013
a(n) = 9*a(n-1) + 8*A049629(n-1), n >= 1, a(0) = 1. This is just the rewritten Chebyshev S(n, 18) recurrence. - Wolfdieter Lang, Aug 26 2014
From Peter Bala, Mar 23 2015: (Start)
a(n) = ( Fibonacci(6*n + 6 - 2*k) - Fibonacci(6*n + 2*k) )/( Fibonacci(6 - 2*k) - Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(6*n + 6 - 2*k - 1) + Fibonacci(6*n + 2*k + 1) )/( Fibonacci(6 - 2*k - 1) + Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n)) n>=1 = [1, 0, 17, 0, 305, 0, 5473, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -20, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)
a(n) = sqrt(2 + (9-4*sqrt(5))^(1+2*n) + (9+4*sqrt(5))^(1+2*n))/(2*sqrt(5)). - Gerry Martens, Jun 04 2015

Extensions

Better description and more terms from Michael Somos

A084068 a(1) = 1, a(2) = 2; a(2*k) = 2*a(2*k-1) - a(2*k-2), a(2*k+1) = 4*a(2*k) - a(2*k-1).

Original entry on oeis.org

1, 2, 7, 12, 41, 70, 239, 408, 1393, 2378, 8119, 13860, 47321, 80782, 275807, 470832, 1607521, 2744210, 9369319, 15994428, 54608393, 93222358, 318281039, 543339720, 1855077841, 3166815962, 10812186007, 18457556052, 63018038201, 107578520350
Offset: 1

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

The upper principal and intermediate convergents to 2^(1/2), beginning with 2/1, 3/2, 10/7, 17/12, 58/41, form a strictly decreasing sequence; essentially, numerators=A143609 and denominators=A084068. - Clark Kimberling, Aug 27 2008
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
a(2*n) = (1/sqrt(2))*(1 o 1 o ... o 1) (2*n terms). Cf. A049629, A108412 and A143608.
This is a fourth-order divisibility sequence. Indeed, a(2*n) = U(2*n)/sqrt(2) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ).
It appears that this sequence consists of those numbers m such that 2*m^2 = floor( m*sqrt(2) * ceiling(m*sqrt(2)) ). Cf. A084069. (End)
Conjecture: a(n) is the earliest occurrence of n in A348295, which is to say, a(n) is the least m such that Sum_{k=1..m} (-1)^(floor(k*(sqrt(2)-1))) = Sum_{k=1..m} (-1)^A097508(k) = n. This has been confirmed for the first 32 terms by Chai Wah Wu, Oct 21 2021. - Jianing Song, Jul 16 2022

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Maple
    a := proc (n) if `mod`(n, 2) = 1 then (1/2)*(sqrt(2) + 1)^n - (1/2)*(sqrt(2) - 1)^n else (1/2)*((sqrt(2) + 1)^n - (sqrt(2) - 1)^n)/sqrt(2) end if;
    end proc:
    seq(simplify(a(n)), n = 1..30); # Peter Bala, Mar 25 2018
  • Mathematica
    a[n_] := ((Sqrt[2]+1)^n - (Sqrt[2]-1)^n) ((-1)^n(Sqrt[2]-2) + (Sqrt[2]+2))/8;
    Table[Simplify[a[n]], {n, 30}] (* after Paul Barry, Peter Luschny, Mar 29 2018 *)
  • PARI
    a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,0,6,0]^(n-1)*[1;2;7;12])[1,1] \\ Charles R Greathouse IV, Jun 20 2015

Formula

"A Diofloortin equation": n such that 2*n^2=floor(n*sqrt(2)*ceiling(n*sqrt(2))).
a(n)*a(n+3) = -2 + a(n+1)*a(n+2).
From Paul Barry, Jun 06 2006: (Start)
G.f.: x*(1+x)^2/(1-6*x^2+x^4);
a(n) = ((sqrt(2)+1)^n-(sqrt(2)-1)^n)*((sqrt(2)/8-1/4)*(-1)^n+sqrt(2)/8+1/4);
a(n) = Sum_{k=0..floor(n/2)} 2^k*(C(n,2*k)-C(n-1,2*k+1)*(1+(-1)^n)/2). (End)
A000129(n+1) = A079496(n) + a(n). - Gary W. Adamson, Sep 18 2007
Equals A133566 * A000129, where A000129 = the Pell sequence. - Gary W. Adamson, Sep 18 2007
From Peter Bala, Mar 23 2018: (Start)
a(2*n + 2) = a(2*n + 1) + sqrt( (1 + a(2*n + 1)^2)/2 ).
a(2*n + 1) = 2*a(2*n) + sqrt( (1 + 2*a(2*n)^2) ).
More generally,
a(2*n+2*m+1) = sqrt(2)*a(2*n) o a(2*m+1), where o is the binary operation defined above, that is,
a(2*n+2*m+1) = sqrt(2)*a(2*n)*sqrt(1 + a(2*m+1)^2) + a(2*m+1)*sqrt(1 + 2*a(2*n)^2).
sqrt(2)*a(2*(n + m)) = (sqrt(2)*a(2*n)) o (sqrt(2)*a(2*m)), that is,
a(2*n+2*m) = a(2*n)*sqrt(1 + 2*a(2*m)^2) + a(2*m)*sqrt(1 + 2*a(2*n)^2).
sqrt(1 + 2*a(2*n)^2) = A001541(n).
1 + 2*a(2*n)^2 = A055792(n+1).
a(2*n) - a(2*n-1) = A001653(n).
(1 + a(2*n+1)^2)/2 = A008844(n). (End)
a(n) = A000129(n) for even n and A001333(n) for odd n. - R. J. Mathar, Oct 15 2021

A005013 a(n) = 3*a(n-2) - a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=4. Alternates Fibonacci (A000045) and Lucas (A000032) sequences for even and odd n.

Original entry on oeis.org

0, 1, 1, 4, 3, 11, 8, 29, 21, 76, 55, 199, 144, 521, 377, 1364, 987, 3571, 2584, 9349, 6765, 24476, 17711, 64079, 46368, 167761, 121393, 439204, 317811, 1149851, 832040, 3010349, 2178309, 7881196, 5702887, 20633239, 14930352, 54018521, 39088169, 141422324
Offset: 0

Views

Author

Keywords

Comments

S(n,sqrt(5)), with the Chebyshev polynomials A049310, is an integer sequence in the real quadratic number field Q(sqrt(5)) with basis numbers <1,phi>, phi:=(1+sqrt(5))/2. S(n,sqrt(5)) = A(n) + 2*B(n)*phi, with A(n)= a(n+1)*(-1)^n and B(n)= A147600(n-1), n>=0, with A147600(-1):=0.
a(n) = p(n+1) where p(x) is the unique degree-(n-1) polynomial such that p(k) = Fibonacci(k) for k = 1, ..., n. - Michael Somos, Jan 08 2012
Row sums of A227431. - Richard R. Forberg, Jul 29 2013
This is the sequence of Lehmer numbers u_n(sqrt(R),Q) with the parameters R = 5 and Q = 1. It is a strong divisibility sequence, that is, gcd(a(n), a(m)) = a(gcd(n,m)) for all natural numbers n and m. The sequence satisfies a linear recurrence of order four. - Peter Bala, Apr 18 2014
The sequence of convergents of the 2-periodic continued fraction [0; 1, -5, 1, -5, ...] = 1/(1 - 1/(5 - 1/(1 - 1/(5 - ...)))) = (1/2)*(5 - sqrt(5)) begins [0/1, 1/1, 5/4, 4/3, 15/11, 11/8, 40/29, ...]; the denominators give the present sequence. The sequence of numerators [0, 1, 5, 4, 15, 11, 40, ...] is A203976. Cf. A108412 and A026741. - Peter Bala, May 19 2014
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. We have (1/2)*a(2*n + 1) = 1/2 o 1/2 o ... o 1/2 (2*n + 1 terms) and (1/2)*sqrt(5)* a(2*n) = 1/2 o 1/2 o ... o 1/2 (2*n terms). Cf. A084068 and A049629. - Peter Bala, Mar 23 2018

Examples

			G.f. = x + x^2 + 4*x^3 + 3*x^4 + 11*x^5 + 8*x^6 + 29*x^7 + 21*x^8 + 76*x^9 + ...
a(3) = 4 since p(x) = (x^2 - 3*x + 4) / 2 interpolates p(1) = 1, p(2) = 1, p(3) = 2, and p(4) = 4. - _Michael Somos_, Jan 08 2012
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[0,1,1,4];; for n in [5..40] do a[n]:=3*a[n-2]-a[n-4]; od; a; # Muniru A Asiru, Oct 21 2018
  • Haskell
    a005013 n = a005013_list !! n
    a005013_list = alt a000045_list a000032_list where
       alt (f::fs) (:l:ls) = f : l : alt fs ls
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Magma
    I:=[0,1,1,4]; [n le 4 select I[n]  else 3*Self(n-2) - Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 09 2016
    
  • Maple
    with(combinat): A005013 := n-> if n mod 2 = 0 then fibonacci(n) else fibonacci(n+1)+fibonacci(n-1); fi;
    A005013:=z*(z**2+z+1)/((z**2+z-1)*(z**2-z-1)); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(x + x^2 + x^3)/(1 - 3x^2 + x^4), {x, 0, 40}], x]
    f[n_] = Product[(1 + 4*Sin[k*Pi/n]^2), {k, 1, Floor[(n - 1)/2]}]; a = Table[f[n], {n, 0, 30}]; Round[a]; FullSimplify[ExpandAll[a]] (* Roger L. Bagula and Gary W. Adamson, Nov 26 2008 *)
    LinearRecurrence[{0, 3, 0, -1}, {0, 1, 1, 4}, 100] (* G. C. Greubel, Feb 08 2016 *)
  • PARI
    {a(n) = if( n%2, fibonacci(n+1) + fibonacci(n-1), fibonacci(n))}; /* Michael Somos, Jan 08 2012 */
    
  • PARI
    {a(n) = if( n<0, -a(-n), subst( polinterpolate( vector( n, k, fibonacci(k))), x, n+1))}; /* Michael Somos, Jan 08 2012 */
    

Formula

a(1) = a(2) = 1, a(3) = 4, a(n) = (a(n-1) * a(n-2) - 1) / a(n-3), unless n=3. a(-n) = -a(n).
a(2n) = A001906(n), a(2n+1) = A002878(n). a(n)=F(n+1)+(-1)^(n+1)F(n-1). - Mario Catalani (mario.catalani(AT)unito.it), Sep 20 2002
G.f.: x*(1+x+x^2)/((1-x-x^2)*(1+x-x^2)).
a(n) = Product_{k=1..floor((n-1)/2)} (1 + 4*sin(k*Pi/n)^2). - Roger L. Bagula and Gary W. Adamson, Nov 26 2008
Binomial transform is A096140. - Michael Somos, Apr 13 2012
From Peter Bala, Apr 18 2014: (Start)
a(n) = (alpha^n - beta^n)/(alpha - beta) for n odd, and a(n) = (alpha^n - beta^n)/(alpha^2 - beta^2) for n even, where alpha = (1/2)*(sqrt(5) + 1) and beta = (1/2)*(sqrt(5) - 1). Equivalently, a(n) = U(n-1, sqrt(5)/2) for n odd and a(n) = (1/sqrt(5))*U(n-1, sqrt(5)/2) for n even, where U(n,x) is the Chebyshev polynomial of the second kind. (End)
E.g.f.: (Phi/sqrt(5))*exp(-Phi*x)*(exp(x)-1)*(exp(sqrt(5)*x) - 1/(Phi)^2), where Phi = (1+sqrt(5))/2. - G. C. Greubel, Feb 08 2016
a(n) = (5^floor((n-1)/2)/2^(n-1))*Sum_{k=0..n-1} binomial(n-1,k)/5^floor(k/2). - Tony Foster III, Oct 21 2018
a(n) = hypergeom([(1 - n)/2, (n + 1) mod 2 - n/2], [1 - n], -4) for n >= 2. - Peter Luschny, Sep 03 2019

Extensions

Additional comments from Michael Somos, Jun 01 2000

A143608 A005319 and A002315 interleaved.

Original entry on oeis.org

0, 1, 4, 7, 24, 41, 140, 239, 816, 1393, 4756, 8119, 27720, 47321, 161564, 275807, 941664, 1607521, 5488420, 9369319, 31988856, 54608393, 186444716, 318281039, 1086679440, 1855077841, 6333631924, 10812186007, 36915112104, 63018038201, 215157040700
Offset: 0

Views

Author

Originally submitted by Clark Kimberling, Aug 27 2008. Merged with an essentially identical sequence submitted by Kenneth J Ramsey, Jun 01 2012, by N. J. A. Sloane, Aug 02 2012

Keywords

Comments

Also, numerators of the lower principal and intermediate convergents to 2^(1/2). The lower principal and intermediate convergents to 2^(1/2), beginning with 1/1, 4/3, 7/5, 24/17, 41/29, form a strictly increasing sequence; essentially, numerators=A143608 and denominators=A079496.
Sequence a(n) such that a(2*n) = sqrt(2*A001108(2*n)) and a(2*n+1) = sqrt(A001108(2*n+1)).
For n > 0, a(n) divides A******(k+1,n+1)-A******(k,n+1) where A****** is any one of A182431, A182439, A182440, A182441 and k is any nonnegative integer.
If p is a prime of the form 8*r +/- 3 then a(p+1) == 0 (mod p); if p is a prime of the form 8*r +/- 1 then a(p-1) == 0 (mod p).
Numbers n such that sqrt(floor(n^2/2 + 1)) is an integer. The integer square roots are given by A079496. - Richard R. Forberg, Aug 01 2013
From Peter Bala, Mar 23 2018: (Start)
Define a binary operation o on the real numbers by x o y = x*sqrt(1 + y^2) + y*sqrt(1 + x^2). The operation o is commutative and associative with identity 0. Then we have
a(2*n + 1) = 1 o 1 o ... o 1 (2*n + 1 terms) and
a(2*n) = sqrt(2)*(1 o 1 o ... o 1) (2*n terms). Cf. A084068.
This is a fourth-order divisibility sequence. Indeed, a(2*n) = sqrt(2)*U(2*n) and a(2*n+1) = U(2*n+1), where U(n) is the Lehmer sequence [Lehmer, 1930] defined by the recurrence U(n) = 2*sqrt(2)*U(n-1) - U(n-2) with U(0) = 0 and U(1) = 1. The solution to the recurrence is U(n) = (1/2)*( (sqrt(2) + 1)^n - (sqrt(2) - 1)^n ). (End)

References

  • Serge Lang, Introduction to Diophantine Approximations, Addison-Wesley, New York, 1966.

Crossrefs

Programs

  • Magma
    I:=[0,1,4,7]; [n le 4 select I[n] else 6*Self(n-2) - Self(n-4): n in [1..30]]; // G. C. Greubel, Mar 27 2018
  • Maple
    A143608 := proc(n)
        option remember;
        if n <= 3 then
            op(n+1,[0,1,4,7]) ;
        else
            6*procname(n-2)-procname(n-4) ;
        end if;
    end proc: # R. J. Mathar, Jul 22 2012
  • Mathematica
    a = -4; b = -1; Reap[While[b<2000000000, t = 4*b-a; Sow[t]; a=b; b=t; t = 2*b-a; Sow[t]; a=b; b=t]][[2,1]]
    CoefficientList[Series[x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4), {x, 0, 30}], x] (* Wesley Ivan Hurt, Aug 24 2014 *)
    LinearRecurrence[{0, 6, 0, -1}, {0, 1, 4, 7}, 31] (* Jean-François Alcover, Sep 21 2017 *)
  • PARI
    a(n)=([0,1,0,0;0,0,1,0;0,0,0,1;-1,0,6,0]^n*[0;1;4;7])[1,1] \\ Charles R Greathouse IV, Jun 11 2015
    
  • PARI
    concat(0, Vec(x*(1+4*x+x^2)/((1+2*x-x^2)*(1-2*x-x^2)) + O(x^50))) \\ Colin Barker, Mar 27 2016
    

Formula

a(2*n) = (a(2*n - 1) + a(2*n + 1))/2.
a(2*n + 1) = (a(2*n) + a(2*n + 2))/4.
a(2*n) = 4*A001109(n).
a(2*n + 1) = 4*A001109(n) + A001541(n).
From Colin Barker, Jun 29 2012: (Start)
a(n) = 6*a(n-2) - a(n-4).
G.f.: x*(1 + 4*x + x^2)/((1 + 2*x - x^2)*(1 - 2*x - x^2)) = x*(1 + 4*x + x^2)/(1 - 6*x^2 + x^4). (End)
2*a(n) = A078057(n) - A123335(n-1). - R. J. Mathar, Jul 04 2012
a(2n) = A005319(n); a(2n+1) = A002315(n). - R. J. Mathar, Jul 17 2009
a(n)*a(n+1) + 1 = A001653(n+1). - Charlie Marion, Dec 11 2012
a(n) = (((-2 - sqrt(2) + (-1)^n * (-2+sqrt(2))) * ((-1+sqrt(2))^n - (1+sqrt(2))^n)))/(4*sqrt(2)). - Colin Barker, Mar 27 2016
a(n) = A084068(n) - A079496(n). - César Aguilera, Feb 14 2023

A097775 Pell equation solutions (14*a(n))^2 - 197*b(n)^2 = -1 with b(n) = A097776(n), n >= 0.

Original entry on oeis.org

1, 787, 618581, 486203879, 382155630313, 300373839222139, 236093455472970941, 185569155627915937487, 145857120230086453893841, 114643510931692324844621539, 90109653735189937241418635813, 70826073192348358979430203127479, 55669203419532074967894898239562681
Offset: 0

Views

Author

Wolfdieter Lang, Aug 31 2004

Keywords

Examples

			(x,y) = (14*1=14;1), (11018=14*787;785), (8660134=14*618581;617009), ... give the positive integer solutions to x^2 - 197*y^2 =-1.
		

Crossrefs

Cf. A097774 for S(n, 2*393).
Cf. similar sequences of the type (1/k)*sinh((2*n + 1)*arcsinh(k)): A002315 (k=1), A049629 (k=2), A097314 (k=3), A078989 (k=4), A097726 (k=5), A097729 (k=6), A097732 (k=7), A097735 (k=8), A097738 (k=9), A097741 (k=10), A097766 (k=11), A097769 (k=12), A097772 (k=13), this sequence (k=14).

Programs

  • Mathematica
    LinearRecurrence[{786, -1}, {1, 787}, 20] (* Harvey P. Dale, Dec 12 2017 *)
  • PARI
    Vec((1+x)/(1-2*393*x+x^2) + O(x^100)) \\ Colin Barker, Apr 04 2015

Formula

G.f.: (1 + x)/(1 - 2*393*x + x^2).
a(n) = S(n, 2*393) + S(n-1, 2*393) = S(2*n, 2*sqrt(197)), with Chebyshev polynomials of the 2nd kind. See A049310 for the triangle of S(n, x) = U(n, x/2) coefficients. S(-1, x) = 0 = U(-1, x).
a(n) = ((-1)^n)*T(2*n+1, 14*i)/(14*i) with the imaginary unit i and Chebyshev polynomials of the first kind. See the T-triangle A053120.
a(n) = 786*a(n-1) - a(n-2) for n > 1; a(0)=1, a(1)=787. - Philippe Deléham, Nov 18 2008
a(n) = (1/14)*sinh((2*n + 1)*arcsinh(14)). - Bruno Berselli, Apr 05 2018

A157014 Expansion of x*(1-x)/(1 - 22*x + x^2).

Original entry on oeis.org

1, 21, 461, 10121, 222201, 4878301, 107100421, 2351330961, 51622180721, 1133336644901, 24881784007101, 546265911511321, 11992968269241961, 263299036011811821, 5780585823990618101, 126909589091781786401, 2786230374195208682721, 61170158643202809233461
Offset: 1

Views

Author

Paul Weisenhorn, Feb 21 2009

Keywords

Comments

This sequence is part of a solution of a general problem involving 2 equations, three sequences a(n), b(n), c(n) and a constant A:
A * c(n)+1 = a(n)^2,
(A+1) * c(n)+1 = b(n)^2, where solutions are given by the recurrences:
a(1) = 1, a(2) = 4*A+1, a(n) = (4*A+2)*a(n-1)-a(n-2) for n>2, resulting in a(n) terms 1, 4*A+1, 16*A^2+12*A+1, 64*A^3+80*A^2+24*A+1, ...;
b(1) = 1, b(2) = 4*A+3, b(n) = (4*A+2)*b(n-1)-b(n-2) for n>2, resulting in b(n) terms 1, 4*A+3, 16*A^2+20*A+5, 64*A^3+112*A^2+56*A+7, ...;
c(1) = 0, c(2) = 16*A+8, c(3) = (16*A^2+16*A+3)*c(2), c(n) = (16*A^2+16*A+3) * (c(n-1)-c(n-2)) + c(n-3) for n>3, resulting in c(n) terms 0, 16*A+8, 256*A^3+384*A^2+176*A+24, 4096*A^5 + 10240*A^4 + 9472*A^3 + 3968*A^2 + 736*A + 48, ... .
A157014 is the a(n) sequence for A=5.
For other A values the a(n), b(n) and c(n) sequences are in the OEIS:
A a-sequence b-sequence c-sequence
2 A072256 A054320(n-1) A045502(n-1)
9 A097315(n-1) A097314(n-1) A157881
Positive values of x (or y) satisfying x^2 - 22xy + y^2 + 20 = 0. - Colin Barker, Feb 19 2014
From Klaus Purath, Apr 22 2025: (Start)
Nonnegative solutions to the Diophantine equation 5*b(n)^2 - 6*a(n)^2 = -1. The corresponding b(n) are A133283(n). Note that (b(n+1)^2 - b(n)*b(n+2))/4 = 6 and (a(n)*a(n+2) - a(n+1)^2)/4 = 5.
(a(n) + b(n))/2 = (b(n+1) - a(n+1))/2 = A077421(n-1) = Lucas U(22,1). Also b(n)*a(n+1) - b(n+1)*a(n) = -2.
a(n)=(t(i+2*n-1) + t(i))/(t(i+n) + t(i+n-1)) as long as t(i+n) + t(i+n-1) != 0 for any integer i and n >= 1 where (t) is a sequence satisfying t(i+3) = 21*t(i+2) - 21*t(i+1) + t(i) or t(i+2) = 22*t(i+1) - t(i) without regard to initial values and including this sequence itself. (End)

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,21];; for n in [3..20] do a[n]:=22*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 14 2020
  • Magma
    I:=[1,21]; [n le 2 select I[n] else 22*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Feb 21 2014
    
  • Maple
    seq( simplify(ChebyshevU(n-1,11) - ChebyshevU(n-2,11)), n=1..20); # G. C. Greubel, Jan 14 2020
  • Mathematica
    CoefficientList[Series[(1-x)/(1-22x+x^2), {x,0,20}], x] (* Vincenzo Librandi, Feb 21 2014 *)
    a[c_, n_] := Module[{},
       p := Length[ContinuedFraction[ Sqrt[ c]][[2]]];
       d := Denominator[Convergents[Sqrt[c], n p]];
       t := Table[d[[1 + i]], {i, 0, Length[d] - 1, p}];
       Return[t];
    ] (* Complement of A041049 *)
    a[30, 20] (* Gerry Martens, Jun 07 2015 *)
    Table[ChebyshevU[n-1, 11] - ChebyshevU[n-2, 11], {n,20}] (* G. C. Greubel, Jan 14 2020 *)
  • PARI
    Vec((1-x)/(1-22*x+x^2)+O(x^20)) \\ Charles R Greathouse IV, Sep 23 2012
    
  • Sage
    [chebyshev_U(n-1,11) - chebyshev_U(n-2,11) for n in (1..20)] # G. C. Greubel, Jan 14 2020
    

Formula

G.f.: x*(1-x)/(1-22*x+x^2).
a(1) = 1, a(2) = 21, a(n) = 22*a(n-1) - a(n-2) for n>2.
5*A157460(n)+1 = a(n)^2 for n>=1.
6*A157460(n)+1 = A133283(n)^2 for n>=1.
a(n) = (6+sqrt(30)-(-6+sqrt(30))*(11+2*sqrt(30))^(2*n))/(12*(11+2*sqrt(30))^n). - Gerry Martens, Jun 07 2015
a(n) = ChebyshevU(n-1, 11) - ChebyshevU(n-2, 11). - G. C. Greubel, Jan 14 2020

Extensions

Edited by Alois P. Heinz, Sep 09 2011

A053606 a(n) = (Fibonacci(6*n+3) - 2)/4.

Original entry on oeis.org

0, 8, 152, 2736, 49104, 881144, 15811496, 283725792, 5091252768, 91358824040, 1639367579960, 29417257615248, 527871269494512, 9472265593285976, 169972909409653064, 3050040103780469184, 54730748958638792256, 982103441151717791432
Offset: 0

Views

Author

Keywords

Comments

Define a(1)=0, a(2)=8 with 5*(a(1)^2) + 5*a(1) + 1 = j(1)^2 = 1^2 and 5*(a(2)^2) + 5*a(2) + 1 = j(2)^2 = 19^2. Then a(n) = a(n-2) + 8*sqrt(5*(a(n-1)^2) + 5*a(n-1)+1). Another definition: a(n) such that 5*(a(n)^2) + 5*a(n) + 1 = j(n)^2. - Pierre CAMI, Mar 30 2005
It appears this sequence gives all nonnegative m such that 5*m^2 + 5*m + 1 is a square. - Gerald McGarvey, Apr 03 2005
sqrt(5*a(n)^2+5*a(n)+1) = A049629(n). - Gerald McGarvey, Apr 19 2005
a(n) is such that 5*a(n)^2 + 5*a(n) + 1 = j^2 = the square of A049629(n). Also A049629(n)/a(n) tends to sqrt(5) as n increases. - Pierre CAMI, Apr 21 2005
From Russell Jay Hendel, Apr 25 2015: (Start)
We prove the two McGarvey-CAMI conjectures mentioned at the beginning of the Comments section. Let, as usual, F(n) = A000045(n), the Fibonacci numbers. In the sequel we indicate equations with upper case letters ((A), (B), (C), (D)) for ease of reference.
Then we must prove (A), 5*((F(6*n+3)-2)/4)^2 + 5*((F(6*n+3)-2)/4) + 1 = ((F(6*n+5)-F(6*n+1))/4)^2. Let m = 3*n+1 so that 6*n+1, 6*n+3, and 6*n+5 are 2*m-1, 2*m+1, and 2*m+3 respectively. Define G(m) = F(6*n+3) = F(2*m+1) = A001519(m+1), the bisected Fibonacci numbers. We can now simplify equation (A) by i) multiplying the LHS and RHS by 16, ii) expanding squares, and iii) gathering like terms. This shows proof of (A) equivalent to proving (B), 5*G(m)^2-4 = (G(m+1)-G(m-1))^2.
By Jarden's theorem (D. Jarden, Recurring sequences, 2nd ed. Jerusalem, Riveon Lematematika, (1966)), if {H(n)}{n >=1} is any recursive sequence satisfying (C), H(n)=3H(n-1)-H(n-2), then {H(n)}^2{n >=1} is also a recursive sequence satisfying (D), H(n)^2=8H(n-1)^2-8H(n-2)^2+H(n-3)^2. As noted in the Formula section of A001519, {G(m)}_{m >= 1} satisfies (C).
Proof of (B) is now straightforward. Since {G(m)}{m >=1} satisfies (C), it follows that {G(m)^2}{m >=1} satisfies (D), and therefore, {5G(m)^2-4}_{m >=1} also satisfies (D).
Similarly, since {G(m)}{m >=1} satisfies (C), it follows that both {G(m+1)}{m >=1}, {G(m-1)}{m >=1} and their difference {G(m+1)-G(m-1)}{m >=1} satisfy (C), and therefore {G(m+1)-G(m-1)}^2_{m >=1} satisfies (D).
But then the LHS and RHS of (B) are equal for m=1,2,3 and satisfy the same recursion, (D). Hence the LHS and RHS of (B) are equal for all m. This completes the proof. (End)

Crossrefs

Cf. A049629.
Related to sum of Fibonacci(kn) over n.. A000071, A027941, A099919, A058038, A138134.

Programs

Formula

a(n) = 8*A049664(n).
a(n+1) = 9*a(n) + 2*sqrt(5*(2*a(n)+1)^2-1) + 4. - Richard Choulet, Aug 30 2007
G.f.: 8*x/((1-x)*(1-18*x+x^2)). - Richard Choulet, Oct 09 2007
a(n) = 18*a(n-1) - a(n-2) + 8, n > 1. - Gary Detlefs, Dec 07 2010
a(n) = Sum_{k=0..n} A134492(k). - Gary Detlefs, Dec 07 2010
a(n) = (Fibonacci(6*n+6) - Fibonacci(6*n) - 8)/16. - Gary Detlefs, Dec 08 2010

A160682 The list of the A values in the common solutions to 13*k+1 = A^2 and 17*k+1 = B^2.

Original entry on oeis.org

1, 14, 209, 3121, 46606, 695969, 10392929, 155197966, 2317576561, 34608450449, 516809180174, 7717529252161, 115246129602241, 1720974414781454, 25699370092119569, 383769576967012081, 5730844284413061646, 85578894689228912609, 1277952576054020627489
Offset: 1

Views

Author

Paul Weisenhorn, May 23 2009

Keywords

Comments

This summarizes the case C=13 of common solutions to C*k+1=A^2, (C+4)*k+1=B^2.
The 2 equations are equivalent to the Pell equation x^2-C*(C+4)*y^2=1,
with x=(C*(C+4)*k+C+2)/2; y=A*B/2 and with smallest values x(1) = (C+2)/2, y(1)=1/2.
Generic recurrences are:
A(j+2)=(C+2)*A(j+1)-A(j) with A(1)=1; A(2)=C+1.
B(j+2)=(C+2)*B(j+1)-B(j) with B(1)=1; B(2)=C+3.
k(j+3)=(C+1)*(C+3)*( k(j+2)-k(j+1) )+k(j) with k(1)=0; k(2)=C+2; k(3)=(C+1)*(C+2)*(C+3).
x(j+2)=(C^2+4*C+2)*x(j+1)-x(j) with x(1)=(C+2)/2; x(2)=(C^2+4*C+1)*(C+2)/2;
Binet-type of solutions of these 2nd order recurrences are:
R=C^2+4*C; S=C*sqrt(R); T=(C+2); U=sqrt(R); V=(C+4)*sqrt(R);
A(j)=((R+S)*(T+U)^(j-1)+(R-S)*(T-U)^(j-1))/(R*2^j);
B(j)=((R+V)*(T+U)^(j-1)+(R-V)*(T-U)^(j-1))/(R*2^j);
x(j)+sqrt(R)*y(j)=((T+U)*(C^2*4*C+2+(C+2)*sqrt(R))^(j-1))/2^j;
k(j)=(((T+U)*(R+2+T*U)^(j-1)+(T-U)*(R+2-T*U)^(j-1))/2^j-T)/R. [Paul Weisenhorn, May 24 2009]
.C -A----- -B----- -k-----
For n>=2, a(n) equals the permanent of the (2n-2)X(2n-2) tridiagonal matrix with sqrt(13)'s along the main diagonal, and 1's along the superdiagonal and the subdiagonal. [John M. Campbell, Jul 08 2011]
Positive values of x (or y) satisfying x^2 - 15xy + y^2 + 13 = 0. - Colin Barker, Feb 11 2014

Crossrefs

Cf. similar sequences listed in A238379.

Programs

  • Magma
    I:=[1,14]; [n le 2 select I[n] else 15*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 12 2014
    
  • Mathematica
    LinearRecurrence[{15,-1},{1,14},20] (* Harvey P. Dale, Oct 08 2012 *)
    CoefficientList[Series[(1 - x)/(1 - 15 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 12 2014 *)
  • PARI
    a(n) = round((2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221)) \\ Colin Barker, Jul 25 2016

Formula

a(n) = 15*a(n-1)-a(n-2).
G.f.: (1-x)*x/(1-15*x+x^2).
a(n) = (2^(-1-n)*((15-sqrt(221))^n*(13+sqrt(221))+(-13+sqrt(221))*(15+sqrt(221))^n))/sqrt(221). - Colin Barker, Jul 25 2016

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009
First formula corrected by Harvey P. Dale, Oct 08 2012

A075796 Numbers k such that 5*k^2 + 5 is a square.

Original entry on oeis.org

2, 38, 682, 12238, 219602, 3940598, 70711162, 1268860318, 22768774562, 408569081798, 7331474697802, 131557975478638, 2360712083917682, 42361259535039638, 760141959546795802, 13640194012307284798, 244763350261984330562, 4392100110703410665318, 78813038642399407645162
Offset: 1

Views

Author

Gregory V. Richardson, Oct 13 2002

Keywords

Comments

Bisection of A001077; a(n) = A001077(2*n-1). - Greg Dresden, Jun 08 2021
From Peter Bala, Aug 25 2022: (Start)
The aerated sequence (b(n))n>=1 = [2, 0, 38, 0, 682, 0, 1238, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). The sequence (1/2)*(b(n))n>=1 is the case P1 = 0, P2 = -16, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047. (End)

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

Programs

  • Magma
    I:=[2,38]; [n le 2 select I[n] else 18*Self(n-1)-Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 30 2011
    
  • Magma
    [Lucas(6*n-3)/2: n in [1..20]]; // G. C. Greubel, Feb 13 2019
    
  • Maple
    with(combinat); A075796:=n->fibonacci(6*n+3)+fibonacci(6*n)/2; seq(A075796(n), n=1..50); # Wesley Ivan Hurt, Nov 29 2013
  • Mathematica
    LinearRecurrence[{18, -1}, {2, 38}, 50] (* Sture Sjöstedt, Nov 29 2011; typo fixed by Vincenzo Librandi, Nov 30 2011 *)
    LucasL[6*Range[20]-3]/2 (* G. C. Greubel, Feb 13 2019 *)
    CoefficientList[Series[2*(1+x)/( 1-18*x+x^2 ), {x,0,20}],x] (* Stefano Spezia, Mar 02 2019 *)
  • PARI
    vector(20, n, (fibonacci(6*n-2) + fibonacci(6*n-4))/2) \\ G. C. Greubel, Feb 13 2019
    
  • Sage
    [(fibonacci(6*n-2) + fibonacci(6*n-4))/2 for n in (1..20)] # G. C. Greubel, Feb 13 2019

Formula

a(n) = (((9 + 4*sqrt(5))^n - (9 - 4*sqrt(5))^n) + ((9 + 4*sqrt(5))^(n-1) - (9 - 4*sqrt(5))^(n-1)))/(4*sqrt(5)).
a(n) = 18*a(n-1) - a(n-2).
a(n) = 2*A049629(n-1).
Limit_{n->oo} a(n)/a(n-1) = 8*phi + 1 = 9 + 4*sqrt(5).
a(n+1) = 9*a(n) + 4*sqrt(5)*sqrt((a(n)^2+1)). - Richard Choulet, Aug 30 2007
G.f.: 2*x*(1 + x)/(1 - 18*x + x^2). - Richard Choulet, Oct 09 2007
From Johannes W. Meijer, Jul 01 2010: (Start)
a(n) = A000045(6*n+3) + A000045(6*n)/2.
a(n) = 2*A167808(6*n+4) - A167808(6*n+6).
Limit_{k->oo} a(n+k)/a(k) = A023039(n)*A060645(n)*sqrt(5).
(End)
5*A007805(n)^2 - 1 = a(n+1)^2. - Sture Sjöstedt, Nov 29 2011
From Peter Bala, Nov 29 2013: (Start)
a(n) = Lucas(6*n - 3)/2.
Sum_{n >= 1} 1/(a(n) + 5/a(n)) = 1/4. Compare with A002878, A005248, A023039. (End)
Limit_{n->oo} a(n)/A007805(n-1) = sqrt(5). - A.H.M. Smeets, May 29 2017
E.g.f.: (exp((9 - 4*sqrt(5))*x)*(- 5 + 2*sqrt(5) + (5 + 2*sqrt(5))*exp(8*sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Feb 13 2019
Sum_{n > 0} 1/a(n) = (1/log(9 - 4*sqrt(5)))*(- 17 - 38/sqrt(5))*sqrt(5*(9 - 4*sqrt(5)))*(- 9 + 4*sqrt(5))*(psi_{9 - 4*sqrt(5)}(1/2) - psi_{9 - 4*sqrt(5)}(1/2 - (I*Pi)/log(9 - 4*sqrt(5)))) approximately equal to 0.527868600269500798938265500122302016..., where psi_q(x) is the q-digamma function. - Stefano Spezia, Feb 25 2019
a(n) = sinh((6*n - 3)*arccsch(2)). - Peter Luschny, May 25 2022
Showing 1-10 of 27 results. Next