A049652 a(n) = (F(3*n+2) - 1)/4, where F=A000045 (the Fibonacci sequence).
0, 1, 5, 22, 94, 399, 1691, 7164, 30348, 128557, 544577, 2306866, 9772042, 41395035, 175352183, 742803768, 3146567256, 13329072793, 56462858429, 239180506510, 1013184884470, 4291920044391, 18180865062035, 77015380292532, 326242386232164, 1381984925221189, 5854182087116921
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- T. Amdeberhan and S. Ekhad, A condensed condensation proof of a determinant evaluation conjectured by Greg Kuperberg and Jim Propp.
- C. L. Dodgson, Condensation of determinants, Proceedings of the Royal Society of London, 15 (1866), 150-155.
- Wolfdieter Lang, Notes on certain inhomogeneous three term recurrences.
- Doron Zeilberger, Dodgson's Determinant-Evaluation Rule Proved by Two-Timing Men and Women, Electron. J. Combin. 4 (no. 2, "The Wilf Festschrift") (1997), #R22, 2 pp. (p. 12).
- Index entries for linear recurrences with constant coefficients, signature (5,-3,-1).
Programs
-
Magma
[(Fibonacci(3*n+2) - 1)/4: n in [0..30]]; // G. C. Greubel, Dec 05 2017
-
Maple
a:= n-> add(fibonacci(i,4), i=0..n): seq(a(n), n=0..22); # Zerinvary Lajos, Mar 20 2008
-
Mathematica
s = 0; lst = {s}; Do[s += Fibonacci[n, 4]; AppendTo[lst, s], {n, 1, 22, 1}]; lst (* Zerinvary Lajos, Jul 14 2009 *) LinearRecurrence[{5, -3, -1}, {0, 1, 5}, 30] (* or *) Table[(Fibonacci[ 3*n+2] - 1)/4, {n,0,30}] (* G. C. Greubel, Dec 05 2017 *)
-
PARI
a(n)=fibonacci(3*n+2)\4 \\ Charles R Greathouse IV, Jun 11 2015
Formula
a(n) = A099919(n)/2.
From Benoit Cloitre, May 06 2003: (Start)
a(0) = 0, a(1) = 1; a(n) = ceiling(r(4)*a(n-1)) where r(4) = 2+sqrt(5) is the positive root of X^2 = 4*X+1. More generally the sequence a(1) = 1, a(n) = ceiling(r(z)*a(n-1)) where r(z) = (1/2)*(z+sqrt(z^2+4)) is the positive root of X^2 = z*X+1 satisfies the linear recurrence: n > 3, a(n) = (z+1)*a(n-1) - (z-1)*a(n-2) - a(n-3) and the closed form formula: a(n) = floor(t(z)*r(z)^n) where t(z) = (1/(2*z))*(1+(z+2)/sqrt(z^2+4)) is the positive root of z*(z^2+4)*X^2 = (z^2+4)*X+1.
a(0) = 0, a(1) = 1, a(2) = 5, a(3) = 22, a(n) = 5*a(n-1) - 3*a(n-2) - a(n-3); a(n) = floor(t(4)*r(4)^n) where t(4) = (1/8)*(1+3/sqrt(5)) is the positive root of 80*X^2 = 20*X+1. (End)
a(n+2) = 4*a(n+1) + a(n) + 1. - Anant Godbole, Apr 27 2006
G.f.: x/((x-1)*(x^2+4*x-1)). - R. J. Mathar, Nov 23 2007
E.g.f.: exp(x)*(exp(x)*(5*cosh(sqrt(5)*x) + 3*sqrt(5)*sinh(sqrt(5)*x)) - 5)/20. - Stefano Spezia, May 24 2024
Comments