A049673 a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).
0, 1, 3, 12, 49, 205, 864, 3653, 15463, 65484, 277365, 1174889, 4976832, 21082073, 89304891, 378301260, 1602509321, 6788337557, 28755857952, 121811766781, 516002920895, 2185823443596, 9259296684333, 39223010163217, 166151337308544, 703828359351025
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- P. Bala, Lucas sequences and divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (5,-2,-5,-1).
Programs
-
Magma
[(Fibonacci(3*n)+Fibonacci(n))/3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2016
-
Maple
with(combinat): A049673:=n->(fibonacci(3*n)+fibonacci(n))/3: seq(A049673(n), n=0..30); # Wesley Ivan Hurt, Jun 01 2016
-
Mathematica
Table[(Fibonacci[3 n] + Fibonacci[n])/3, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 01 2016 *) LinearRecurrence[{5,-2,-5,-1},{0,1,3,12},30] (* Harvey P. Dale, Sep 21 2022 *)
-
PARI
concat(0, Vec(x*(1-2*x-x^2)/((x^2+4*x-1)*(x^2+x-1)) + O(x^30))) \\ Colin Barker, Jun 02 2016
Formula
G.f.: x*(1-2*x-x^2) / ((x^2+4*x-1)*(x^2+x-1)). - R. J. Mathar, Oct 26 2015
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4) for n>3. - Wesley Ivan Hurt, Jun 01 2016
a(n) = ((-(1/2*(1-sqrt(5)))^n-(2-sqrt(5))^n+(1/2*(1+sqrt(5)))^n+(2+sqrt(5))^n))/(3*sqrt(5)). - Colin Barker, Jun 02 2016
G.f.: G(F(t)), where G(t) is g.f. of A001045 and F(t) is g.f. of A000129. - Oboifeng Dira, Dec 07 2016
Comments