cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049673 a(n) = (F(3n) + F(n))/3, where F = A000045 (the Fibonacci sequence).

Original entry on oeis.org

0, 1, 3, 12, 49, 205, 864, 3653, 15463, 65484, 277365, 1174889, 4976832, 21082073, 89304891, 378301260, 1602509321, 6788337557, 28755857952, 121811766781, 516002920895, 2185823443596, 9259296684333, 39223010163217, 166151337308544, 703828359351025
Offset: 0

Views

Author

Keywords

Comments

This is an odd divisibility sequence, that is, if n divides m and n/m is odd then a(n) divides a(m). More generally, if r and s are positive integers such that r = s (mod 2) then the sequence Fibonacci(r*n) + Fibonacci(s*n) is an odd divisibility sequence. In the particular case that r is even and s = r + 2 then Fibonacci(r*n) + Fibonacci(s*n) is, in fact, a divisibility sequence. See for example A215466 and A273624. - Peter Bala, May 29 2016

Crossrefs

Programs

  • Magma
    [(Fibonacci(3*n)+Fibonacci(n))/3: n in [0..30]]; // Vincenzo Librandi, Jun 04 2016
  • Maple
    with(combinat): A049673:=n->(fibonacci(3*n)+fibonacci(n))/3: seq(A049673(n), n=0..30); # Wesley Ivan Hurt, Jun 01 2016
  • Mathematica
    Table[(Fibonacci[3 n] + Fibonacci[n])/3, {n, 0, 30}] (* Wesley Ivan Hurt, Jun 01 2016 *)
    LinearRecurrence[{5,-2,-5,-1},{0,1,3,12},30] (* Harvey P. Dale, Sep 21 2022 *)
  • PARI
    concat(0, Vec(x*(1-2*x-x^2)/((x^2+4*x-1)*(x^2+x-1)) + O(x^30))) \\ Colin Barker, Jun 02 2016
    

Formula

G.f.: x*(1-2*x-x^2) / ((x^2+4*x-1)*(x^2+x-1)). - R. J. Mathar, Oct 26 2015
a(n) = 5*a(n-1) - 2*a(n-2) - 5*a(n-3) - a(n-4) for n>3. - Wesley Ivan Hurt, Jun 01 2016
a(n) = ((-(1/2*(1-sqrt(5)))^n-(2-sqrt(5))^n+(1/2*(1+sqrt(5)))^n+(2+sqrt(5))^n))/(3*sqrt(5)). - Colin Barker, Jun 02 2016
G.f.: G(F(t)), where G(t) is g.f. of A001045 and F(t) is g.f. of A000129. - Oboifeng Dira, Dec 07 2016