cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A049678 a(n) = F(8*n+4)/3, where F=A000045 (the Fibonacci sequence).

Original entry on oeis.org

1, 48, 2255, 105937, 4976784, 233802911, 10983760033, 516002918640, 24241153416047, 1138818207635569, 53500214605455696, 2513371268248782143, 118074949393087305025, 5547009250206854554032, 260591359810329076734479, 12242246901835259751966481
Offset: 0

Views

Author

Keywords

Examples

			a(2) = F(8 * 2 + 4) / 3 = F(20) / 3 = 6765 / 3 = 2255. - _Indranil Ghosh_, Feb 04 2017
		

Crossrefs

Programs

  • Magma
    [Fibonacci(8*n+4)/3: n in [0..30]]; // G. C. Greubel, Dec 02 2017
  • Mathematica
    CoefficientList[Series[(1+x)/(1-47x+x^2),{x,0,20}],x]  (* Harvey P. Dale, Feb 18 2011 *)
    Table[Fibonacci[8*n+4]/3, {n,0,30}] (* G. C. Greubel, Dec 02 2017 *)
  • PARI
    for(n=0,30, print1(fibonacci(8*n+4)/3, ", ")) \\ G. C. Greubel, Dec 02 2017
    

Formula

a(n) = 47*a(n-1) - a(n-2), n>1. a(0)=1, a(1)=48.
G.f.: (1+x)/(1-47*x+x^2).
From Peter Bala, Mar 23 2015: (Start)
a(n) = A004187(2*n + 1); a(n) = A099483(4*n + 1).
a(n) = ( Fibonacci(8*n + 8 - 2*k) + Fibonacci(8*n + 2*k) )/( Fibonacci(8 - 2*k) + Fibonacci(2*k) ), for k an arbitrary integer.
a(n) = ( Fibonacci(8*n + 8 - 2*k - 1) - Fibonacci(8*n + 2*k + 1) )/( Fibonacci(8 - 2*k - 1) - Fibonacci(2*k + 1) ), for k an arbitrary integer.
The aerated sequence (b(n))n>=1 = [1, 0, 48, 0, 2255, 0, 105937, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -45, Q = -1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. (End)

Extensions

Better description and more terms from Michael Somos
2 more terms from Indranil Ghosh, Feb 04 2017