A049777 Triangular array read by rows: T(m,n) = n + n+1 + ... + m = (m+n)(m-n+1)/2.
1, 3, 2, 6, 5, 3, 10, 9, 7, 4, 15, 14, 12, 9, 5, 21, 20, 18, 15, 11, 6, 28, 27, 25, 22, 18, 13, 7, 36, 35, 33, 30, 26, 21, 15, 8, 45, 44, 42, 39, 35, 30, 24, 17, 9, 55, 54, 52, 49, 45, 40, 34, 27, 19, 10, 66, 65, 63, 60, 56, 51, 45, 38, 30, 21, 11, 78, 77, 75, 72, 68, 63, 57, 50
Offset: 1
Examples
Rows: {1}; {3,2}; {6,5,3}; ... Triangle begins: 1; 3, 2; 6, 5, 3; 10, 9, 7, 4; 15, 14, 12, 9, 5; 21, 20, 18, 15, 11, 6; 28, 27, 25, 22, 18, 13, 7; 36, 35, 33, 30, 26, 21, 15, 8; 45, 44, 42, 39, 35, 30, 24, 17, 9; 55, 54, 52, 49, 45, 40, 34, 27, 19, 10; ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..5000
- M. El Bachraoui, Primes in the interval [2n,3n], Int. J. Contemp. Math. Sciences 1:13 (2006), pp. 617-621.
- A. Loo, On the primes in the interval [3n,4n], Int. J. Contemp. Math. Sciences 6 (2011), no. 38, 1871-1882.
- S. Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., 11 (1919), 181-182.
- Vladimir Shevelev, Charles R. Greathouse IV, Peter J. C. Moses, On intervals (kn, (k+1)n) containing a prime for all n>1, Journal of Integer Sequences, Vol. 16 (2013), Article 13.7.3. arXiv, arXiv:1212.2785 [math.NT], 2012.
Crossrefs
Programs
-
Magma
/* As triangle */ [[(m+n)*(m-n+1) div 2: n in [1..m]]: m in [1.. 15]]; // Vincenzo Librandi, Oct 27 2014
-
Mathematica
Flatten[Table[(n+k) (n-k+1)/2,{n,15},{k,n}]] (* Harvey P. Dale, Feb 27 2012 *)
-
PARI
{T(n,k) = if( k<1 || n
Michael Somos, Oct 06 2007 */
Formula
Partial sums of A002260 row terms, starting from the right; e.g., row 3 of A002260 = (1, 2, 3), giving (6, 5, 3). - Gary W. Adamson, Oct 23 2007
Sum_{k=0..n-1} (-1)^k*(2*k+1)*A000203(T(n,k)) = (-1)^(n-1)*A000330(n). - Philippe Deléham, Mar 07 2013
Read as a square array: T(n,k) = k*(k+2n-1)/2. - Bob Selcoe, Oct 27 2014
Comments