A050150 Odd numbers with prime number of divisors.
3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1
Examples
Numbers of the form p^6 for example (such as 3^6 = 729) are here but not in A062090.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A062090 (a different sequence).
Programs
-
Haskell
a050150 n = a050150_list !! (n-1) a050150_list = filter ((== 1) . a010051 . (+ 1) . a100995) [1, 3 ..] -- Reinhard Zumkeller, Aug 16 2013
-
Mathematica
Select[ Range[1, 250, 2], PrimeQ[ Length[ Divisors[ # ]]] & ] Select[Range[1,799,2],PrimeQ[DivisorSigma[0,#]]&] (* Harvey P. Dale, Jun 22 2011 *)
-
PARI
forstep(n=1,1000,2, if(isprime(numdiv(n)),print1(n,",")))
-
PARI
is(n)=n%2 && isprime(isprimepower(n)+1) \\ Charles R Greathouse IV, Aug 28 2013
-
Python
from sympy import divisor_count, isprime def ok(n): return n and n%2 and isprime(divisor_count(n)) print([k for k in range(250) if ok(k)]) # Michael S. Branicky, Jul 05 2022
Formula
Numbers of the form p^e where p is an odd prime and e+1 is a prime.
a(n) ~ n log n. - Charles R Greathouse IV, Aug 28 2013
Extensions
More terms from Jud McCranie, Oct 31 2001
Comments