cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050150 Odd numbers with prime number of divisors.

Original entry on oeis.org

3, 5, 7, 9, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1

Views

Author

Jason Earls, Jul 04 2001

Keywords

Comments

Here but not in A062090: [729, 15625, 59049, 117649, 531441]; in A062090 but not here: [1, 6561, 390625]. - Klaus Brockhaus, Nov 01 2001

Examples

			Numbers of the form p^6 for example (such as 3^6 = 729) are here but not in A062090.
		

Crossrefs

Cf. A062090 (a different sequence).

Programs

  • Haskell
    a050150 n = a050150_list !! (n-1)
    a050150_list = filter ((== 1) . a010051 . (+ 1) . a100995) [1, 3 ..]
    -- Reinhard Zumkeller, Aug 16 2013
    
  • Mathematica
    Select[ Range[1, 250, 2], PrimeQ[ Length[ Divisors[ # ]]] & ]
    Select[Range[1,799,2],PrimeQ[DivisorSigma[0,#]]&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    forstep(n=1,1000,2, if(isprime(numdiv(n)),print1(n,",")))
    
  • PARI
    is(n)=n%2 && isprime(isprimepower(n)+1) \\ Charles R Greathouse IV, Aug 28 2013
    
  • Python
    from sympy import divisor_count, isprime
    def ok(n): return n and n%2 and isprime(divisor_count(n))
    print([k for k in range(250) if ok(k)]) # Michael S. Branicky, Jul 05 2022

Formula

Numbers of the form p^e where p is an odd prime and e+1 is a prime.
A010051(A100995(a(n)) + 1) = 1. - Reinhard Zumkeller, Aug 16 2013
a(n) ~ n log n. - Charles R Greathouse IV, Aug 28 2013

Extensions

More terms from Jud McCranie, Oct 31 2001