A050212 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=4.
6, 24, 120, 720, 5040, 1260, 40320, 18144, 362880, 223776, 3628800, 2756160, 39916800, 35307360, 1247400, 479001600, 476910720, 38918880, 6227020800, 6822541440, 889945056, 87178291200, 103440879360, 18478684224
Offset: 4
Examples
Triangle begins: : 6; : 24; : 120; : 720; : 5040, 1260; : 40320, 18144; : 362880, 223776; : 3628800, 2756160; : 39916800, 35307360, 1247400;
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.
Links
- Alois P. Heinz, Rows n = 4..300, flattened
- Eric Weisstein's World of Mathematics, Permutation cycle.
Programs
-
Maple
b:= proc(n) option remember; expand(`if`(n=0, 1, add( b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=4..n))) end: T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)): seq(T(n), n=4..20); # Alois P. Heinz, Sep 25 2016
-
Mathematica
b[n_] := b[n] = Expand[If[n==0, 1, Sum[b[n-i] x Binomial[n-1, i-1] (i-1)!, {i, 4, n}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, Exponent[p, x]}]][b[n]]; Table[T[n], {n, 4, 20}] // Flatten (* Jean-François Alcover, Dec 07 2019, after Alois P. Heinz *)
Extensions
Offset changed from 1 to 4 by Alois P. Heinz, Sep 25 2016
Comments