cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050211 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=3.

Original entry on oeis.org

2, 6, 24, 120, 40, 720, 420, 5040, 3948, 40320, 38304, 2240, 362880, 396576, 50400, 3628800, 4419360, 859320, 39916800, 53048160, 13665960, 246400, 479001600, 684478080, 216339552, 9609600, 6227020800, 9464307840, 3501834336
Offset: 3

Views

Author

Keywords

Comments

Generalizes Stirling numbers of the first kind

Examples

			Table begins:
   n\k |      u     u^2    u^3
  = = = = = = = = = = = = = = =
    3  |      2
    4  |      6
    5  |     24
    6  |    120     40
    7  |    720    420
    8  |   5040   3948
    9  |  40320  38304    2240
   ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=3..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=3..15);  # Alois P. Heinz, Sep 25 2016
  • Mathematica
    t[n_ /; n >= 3, k_ /; k >= 1] := t[n, k] = (n - 1)*t[n - 1, k] + (n - 2)*(n - 1)*t[n - 3, k - 1] ; t[, ] = 0; t[3, 1] = 2; Flatten[ Table[t[n, k], {n, 3, 15}, {k, 1, Floor[n/3]}]] (* Jean-François Alcover, Nov 05 2012, after Peter Bala *)

Formula

From Peter Bala, Sep 06 2011: (Start)
E.g.f.: (1-t)^(-u)*exp(-u*(t+t^2/2)) - 1 = (2*u)*t^3/3!+(6*u)*t^4/4!+(24*u)*t^5/5!+(120*u+40*u^2)*t^6/6!+(720*u+420*u^2)*t^7/7!+....
E.g.f. for column k: 1/k!*(-log(1-x)-x-x^2/2)^k.
Starting at row 3, row lengths are 1, 1, 1, 2, 2, 2, 3, 3, 3, ....
Recurrence: T(n,k) = (n-1)*T(n-1,k) + (n-1)*(n-2)*T(n-3,k-1). (End)

A050213 Triangle of number of permutations of {1, 2, ..., n} having exactly k cycles, each of which is of length >=r for r=5.

Original entry on oeis.org

24, 120, 720, 5040, 40320, 362880, 72576, 3628800, 1330560, 39916800, 20338560, 479001600, 303937920, 6227020800, 4643084160, 87178291200, 73721007360, 1743565824, 1307674368000, 1224694598400, 69742632960, 20922789888000
Offset: 5

Views

Author

Keywords

Comments

Generalizes Stirling numbers of the first kind.

Examples

			Triangle begins:
05:       24;
06:      120;
07:      720;
08:     5040;
09:    40320;
10:   362880,    72576;
11:  3628800,  1330560;
12: 39916800, 20338560;
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 257.

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember; expand(`if`(n=0, 1, add(
          b(n-i)*x*binomial(n-1, i-1)*(i-1)!, i=5..n)))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n)):
    seq(T(n), n=5..20);  # Alois P. Heinz, Sep 25 2016
  • Mathematica
    b[n_] := b[n] = Expand[If[n == 0, 1, Sum[b[n - i]*x*Binomial[n - 1, i - 1]* (i - 1)!, {i, 5, n}]]];
    T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][ b[n]];
    T /@ Range[5, 20] // Flatten (* Jean-François Alcover, Dec 08 2019, after Alois P. Heinz *)

Extensions

Offset changed from 1 to 5 by Alois P. Heinz, Sep 25 2016
Showing 1-2 of 2 results.