A050217 Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.
341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
Offset: 1
Keywords
References
- W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from T. D. Noe)
- Eric Weisstein's World of Mathematics, Super-Poulet Numbers
- Wikipedia, Super-Poulet number
Crossrefs
Programs
-
Maple
filter:= = proc(n) not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n)) end proc: select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Sep 13 2016
-
Mathematica
Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
-
PARI
is(n)=if(isprime(n), return(0)); fordiv(n,d, if(Mod(2,d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016
Comments