A291602 Composite integers k satisfying 2^d == 2^(k/d) (mod k) for all d|k and that are not Super-Poulet (A050217).
1105, 13981, 68101, 137149, 149281, 158369, 266305, 285541, 423793, 617093, 625921, 852841, 1052503, 1052929, 1104349, 1128121, 1306801, 1746289, 2940337, 3048841, 3828001, 4072729, 4154161, 4209661, 4682833, 6183601, 6236473, 6617929, 7803769, 9106141, 11157721, 11644921, 12096613, 12932989, 13554781
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Programs
-
PARI
is(k) = {if(k == 1 || !(k%2) || isprime(k), return(0)); my(issp = 1); fordiv(k, d, if(Mod(2, d)^d != 2, issp = 0; break)); if(!issp, fordiv(k, d, if(d^2 <= k && Mod(2, k)^d != Mod(2, k)^(k/d), return(0))); 1, 0);} \\ Amiram Eldar, Apr 22 2024
Comments