cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A050217 Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.

Original entry on oeis.org

341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
Offset: 1

Views

Author

Keywords

Comments

Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016

References

  • W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.

Crossrefs

A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016

Programs

  • Maple
    filter:= = proc(n)
        not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Sep 13 2016
  • Mathematica
    Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
  • PARI
    is(n)=if(isprime(n), return(0)); fordiv(n,d, if(Mod(2,d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016

A328663 Super pseudoprimes to base 3 (A328662) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

7381, 512461, 532171, 1018601, 2044657, 3882139, 5934391, 8624851, 10802017, 14396449, 19383673, 25708453, 32285041, 35728129, 35807461, 38316961, 43040161, 53369149, 58546753, 59162891, 64464919, 71386849, 75397891, 79511671, 81276859, 83083001, 84890737, 85636609
Offset: 1

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

Super pseudoprimes to base 3 are Fermat pseudoprimes to base 3 all of whose composite divisors are also Fermat pseudoprimes to base 3. Therefore all the Fermat pseudoprimes to base 3 that are semiprimes are super pseudoprimes. This sequence contains the nontrivial terms of A328662, i.e. terms with at least one composite proper divisor.
Fehér and Kiss proved that there are infinitely many terms with 3 distinct prime factors (their proof was for all bases a > 1 that are not divisible by 4. Phong proved it for all bases a > 1).
The first term, 7381, is not squarefree. What is the next such term?

Examples

			512461 is in the sequence since it is a Fermat pseudoprime to base 3, 3^512460 == 1 (mod 512461), and all of its divisors that are larger than 1 are either primes (31, 61, and 271), or Fermat pseudoprimes to base 3 (1891, 8401, 16531, 512461).
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Subsequence of A005935, A328662.

Programs

  • Mathematica
    aQ[n_]:=  PrimeOmega[n] > 2 && AllTrue[Rest[Divisors[n]], PowerMod[3, #-1, #] == 1 &]; Select[Range[10^5], aQ]

A291637 Carmichael numbers (A002997) that are super-Poulet numbers (A050217).

Original entry on oeis.org

294409, 1299963601, 4215885697, 4562359201, 7629221377, 13079177569, 19742849041, 45983665729, 65700513721, 147523256371, 168003672409, 227959335001, 459814831561, 582561482161, 1042789205881, 1297472175451, 1544001719761, 2718557844481, 3253891093249, 4116931056001, 4226818060921, 4406163138721, 4764162536641, 4790779641001, 5419967134849, 7298963852041, 8470346587201
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Problem: are there infinitely many such numbers?
From Daniel Suteu, Sep 17 2020: (Start)
If we consider f(n) to be the smallest number in the sequence with n prime factors, then we have:
f(3) = 294409,
f(4) = 3018694485093841,
f(5) <= 521635331852681575100906881,
f(6) <= 2835402730651853232634509813787097410561,
f(7) <= 165784025660216242122027716057592895796242004385542265601. (End)

Crossrefs

Intersection of A178997 and A002997.

A333131 Super pseudoprimes to both bases 2 and 3 (A333130) with more than two prime factors (counted with multiplicity).

Original entry on oeis.org

11500521553, 13079177569, 52474339009, 168003672409, 229352039821, 280792563977, 318289021201, 428178002569, 918660756421, 2015841188197, 2367478228501, 2544457029601, 2639665216117, 3023595814801, 3457449931321, 3712164285421, 4348114583017, 6046196043229
Offset: 1

Views

Author

Amiram Eldar, Mar 08 2020

Keywords

Comments

Up to 2^64 all the 1085 terms are nonsquarefree, 2 terms have 4 prime factors: a(163) = 18362297383286473 = 3037 * 6073 * 9109 * 109297 and a(651) = 2587580959818925201 = 18121 * 36241 * 54361 * 72481, and no term have more than 4 prime factors.

Examples

			11500521553 is a term since it is a Fermat pseudoprime to both bases 2 and 3, and its proper divisors that are larger than 1 are either primes (937, 1873, 6553) or Fermat pseudoprimes to both bases 2 and 3 (1755001, 6140161, 12273769, 11500521553).
		

Crossrefs

Programs

  • Mathematica
    pspQ[n_] := PrimeOmega[n] > 2 && AllTrue[Rest @ Divisors[n], PowerMod[2, # - 1, #] == 1 && PowerMod[3, # - 1, #] == 1 &]; seq = {}; Do[If[pspQ[n], AppendTo[seq, n]], {n, 1, 6*10^10}]; seq

A328664 Least super pseudoprime to base n that is not a semiprime.

Original entry on oeis.org

294409, 7381, 13981, 342271, 9331, 747289, 63, 8, 99, 4921, 1729, 12, 195, 355957, 255, 8, 325, 18, 399, 20, 483, 1183, 575, 8, 27, 1729, 27, 28, 637, 30, 1023, 8, 105, 153, 1295, 12, 1105, 29659, 1599, 8, 12167, 42, 45, 44, 45, 1105, 637, 8, 147, 50, 2703, 27
Offset: 2

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

A number is super pseudoprime to base n > 1 if it is a Fermat pseudoprime to base n and of whose divisors that are larger than 1 are either primes or Fermat pseudoprimes to base n.
The semiprime Fermat pseudoprimes are trivial terms since they do not have composite proper divisors.

Examples

			a(2) = 294409 = 37 * 73 * 109 is the first term of A178997.
a(3) = 7381 = 11^2 * 61 is the first term of A328663.
		

References

  • Michal Krížek, Florian Luca, and Lawrence Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, Springer-Verlag, New York, 2001, chapter 12, Fermat's Little Theorem, Pseudoprimes, and Superpseudoprimes, pp. 130-146.

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k=1}, While[PrimeOmega[k] < 3 || !AllTrue[Rest[Divisors[k]], PowerMod[n, #-1, #] == 1 &], k++]; k]; Array[a, 10, 2]

A328665 Least super-Poulet number (A050217) with n distinct prime factors.

Original entry on oeis.org

341, 294409, 9972894583, 1264022137981459, 14054662152215842621
Offset: 2

Views

Author

Amiram Eldar, Oct 24 2019

Keywords

Comments

a(7) <= 1842158622953082708177091, and a(8) <= 317565023788749598474704753433331761 (from Michon's site).
From Daniel Suteu, Oct 28 2019: (Start)
a(8) <= 192463418472849397730107809253922101,
a(9) <= 1347320741392600160214289343906212762456021,
a(10) <= 70865138168006643427403953978871929070133095474701,
a(11) <= 3363391752747838578311772729701478698952546288306688208857,
a(12) <= 132153369641266990823936945628293401491197666138621036175881960329,
a(13) <= 9105096650335639994239038954861714246150666715328403635257215036295306537. (End)

Crossrefs

Programs

  • Mathematica
    a[n_] := Module[{k=1}, While[PrimeNu[k] < n || PowerMod[2, k - 1, k] != 1 || Union @ PowerMod[2, Rest[Divisors[k]], k] != {2}, k++]; k]; Array[a, 3, 2]
  • PARI
    isok(k, n) = if (omega(k) == n, fordiv(k, d, if(Mod(2, d)^d!=2, return(0))); return(1));
    a(n) = my(k=4); while (!isok(k, n), k++); k; \\ Michel Marcus, Oct 28 2019
    
  • PARI
    isupperbound(n,k) = my(f=factor(k)); omega(f) == n && Mod(2, k)^gcd(vector(#f~, i, f[i,1]-1)) == 1; \\ Daniel Suteu, Oct 28 2019
Showing 1-6 of 6 results.