cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A300418 Number of semiprime Fermat pseudoprimes to base 2 (A214305) less than 10^n.

Original entry on oeis.org

0, 0, 1, 11, 34, 107, 312, 882, 2457, 6504, 17206, 46073, 123868, 334567, 915443, 2520503, 7002043, 19604493, 55264235
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2018

Keywords

Crossrefs

Extensions

Corrected and extended by Daniel Suteu, Dec 10 2019

A050217 Super-Poulet numbers: Poulet numbers whose divisors d all satisfy d|2^d-2.

Original entry on oeis.org

341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31417, 31609, 31621, 35333, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489, 88357, 90751
Offset: 1

Views

Author

Keywords

Comments

Every semiprime in A001567 is in this sequence (see Sierpiński). a(61) = 294409 is the first term having more than two prime factors. See A178997 for super-Poulet numbers having more than two prime factors. - T. D. Noe, Jan 11 2011
Composite numbers n such that 2^d == 2 (mod n) for every d|n. - Thomas Ordowski, Sep 04 2016
Composite numbers n such that 2^p == 2 (mod n) for every prime p|n. - Thomas Ordowski, Sep 06 2016
Composite numbers n = p(1)^e(1)*p(2)^e(2)*...*p(k)^e(k) such that 2^gcd(p(1)-1,p(2)-1,...,p(k)-1) == 1 (mod n). - Thomas Ordowski, Sep 12 2016
Nonsquarefree terms are divisible by the square of a Wieferich prime (see A001220). These include 1194649, 12327121, 5654273717, 26092328809, 129816911251. - Robert Israel, Sep 13 2016
Composite numbers n such that 2^A258409(n) == 1 (mod n). - Thomas Ordowski, Sep 15 2016

References

  • W. Sierpiński, Elementary Theory of Numbers, Warszawa, 1964, p. 231.

Crossrefs

A214305 is a subsequence.
A065341 is a subsequence. - Thomas Ordowski, Nov 20 2016

Programs

  • Maple
    filter:= = proc(n)
        not isprime(n) and andmap(p -> 2&^p mod n = 2, numtheory:-factorset(n))
    end proc:
    select(filter, [seq(i,i=3..10^5,2)]); # Robert Israel, Sep 13 2016
  • Mathematica
    Select[Range[1, 110000, 2], !PrimeQ[#] && Union[PowerMod[2, Rest[Divisors[#]], #]] == {2} & ]
  • PARI
    is(n)=if(isprime(n), return(0)); fordiv(n,d, if(Mod(2,d)^d!=2, return(0))); n>1 \\ Charles R Greathouse IV, Aug 27 2016

A316907 Numbers k such that 2^(k-1) == 1 (mod k) and p-1 does not divide k-1 for every prime p dividing k.

Original entry on oeis.org

7957, 23377, 35333, 42799, 49981, 60787, 129889, 150851, 162193, 164737, 241001, 249841, 253241, 256999, 280601, 318361, 452051, 481573, 556169, 580337, 617093, 665333, 722201, 838861, 877099, 1016801, 1251949, 1252697, 1325843, 1507963, 1534541, 1678541, 1826203, 1969417
Offset: 1

Views

Author

Thomas Ordowski, Jul 16 2018

Keywords

Comments

Numbers k such that 2^k == 2 (mod k) and gcd(k,b^k-b) = 1 for some b > 2.
Problem: are there infinitely many such "anti-Carmichael pseudoprimes"?
All semiprime terms of A316906 are in the sequence; i.e., numbers m in A214305 such that p-1 does not divide q-1, where m = pq and p < q are primes.

Examples

			7957 = 73*109 is pseudoprime and 72 does not divide 7956 (of course also 108 does not divide 7956), note that 72 does not divide 108.
617093 = 43*113*127 is the smallest such pseudoprime with more than two prime factors.
		

Crossrefs

Subsequence of A001567 and of A316906.
Cf. A121707 (probably "anti-Carmichael numbers": n such that p-1 does not divide n-1 for every prime p dividing n).

Programs

  • Mathematica
    Select[Select[Range[2*10^6], PowerMod[2, # - 1, #] == 1 &], Function[k, AllTrue[FactorInteger[k][[All, 1]] - 1, Mod[k - 1, #] != 0 &]]] (* Michael De Vlieger, Jul 20 2018 *)

Extensions

a(7)-a(34) from Michel Marcus, Jul 16 2018

A292559 Composite numbers m such that lpf(2^m - 1) == 1 (mod m).

Original entry on oeis.org

169, 221, 323, 611, 779, 793, 923, 1121, 1159, 1271, 1273, 1343, 1349, 1513, 1717, 1829, 1919, 2033, 2077, 2201, 2413, 2533, 2603, 2759, 2951, 3097, 3131, 3173, 3193, 3281, 3379, 3599, 3721, 3743, 3791, 3937, 3953, 4043, 4223, 4309, 4331, 4369, 4607, 4619, 4811, 4867, 4883, 4981, 5111, 5177, 5263, 5429, 5567, 5699
Offset: 1

Views

Author

Michel Marcus and Thomas Ordowski, Sep 19 2017

Keywords

Comments

All terms are coprime to 2, 3, 5, 7, 11. - Robert Israel, Sep 20 2017
If p = lpf(2^m - 1) and A002326((p-1)/2) = m composite, then m is in this sequence. - Thomas Ordowski, Sep 20 2017
Conjecture: there are no numbers k in this sequence such that, for each prime factor q of 2^k - 1, q == 1 (mod k). - Thomas Ordowski, Sep 20 2017
Note: if all prime factors q of 2^k - 1 are q == 1 (mod k), then 2^k - 1 == 1 (mod k), thus 2^k == 2 (mod k), so k is a pseudoprime. The pseudoprime k = a(42) = 4369 = 17*257 is not a counterexample to this conjecture. A pseudoprime k = P*Q such that both 2^P - 1 and 2^Q - 1 are primes would be a counterexample, but the known Mersenne primes do not give such k. - Thomas Ordowski, Oct 02 2017
If lpf(2^n - 1) == 1 (mod n), then gpf(2^n - 1) == 1 (mod n). Cf. A291855. - Thomas Ordowski, Oct 20 2017
Composites m such that lpf(2^m - 1)*gpf(2^m - 1) is a Fermat pseudoprime to base 2, i.e., is in A214305. - Thomas Ordowski, Oct 29 2017

Crossrefs

Subsequence of A236769.

Programs

  • Mathematica
    searchMax = 1000; Complement[Select[Range[searchMax], Mod[FactorInteger[2^# - 1][[1, 1]], #] == 1 &], Prime[Range[PrimePi[searchMax]]]] (* Alonso del Arte, Sep 19 2017 *)
  • PARI
    lista(nn) = forcomposite(n=1, nn, sp = factor(2^n-1)[1,1]; if ((sp % n) == 1, print1(n, ", "))); \\ Michel Marcus, Sep 19 2017

Formula

A049479(m) == 1 (mod m).

Extensions

a(10)-a(54) from Charles R Greathouse IV, Sep 19 2017

A215150 Pseudoprimes divisible by a smaller pseudoprime.

Original entry on oeis.org

13981, 18705, 23001, 55245, 63973, 72885, 75361, 107185, 126217, 129921, 137149, 157641, 158369, 172081, 176149, 188461, 215265, 266305, 272251, 276013, 278545, 285541, 294409, 348161, 387731, 423793, 464185, 488881, 493697, 617093, 625921, 743665, 748657, 825265
Offset: 1

Views

Author

Arkadiusz Wesolowski, Aug 04 2012

Keywords

Comments

Here pseudoprime means a Fermat base-2 pseudoprime (a member of A001567).
Pseudoprimes by which the numbers from sequence are divisible: 341, 645, 561, 1905, 1729, 645, 341, 1105, 1387 and 1729, 341, 2047, 561, 5461, 2821, 1387, 1729, 1905, 1105, 2047, 1387, 2465 and 3277, 4681, 2701 and 4033 and 7957, 341, 5461, 4369, 5461, 2701, 4369, 5461, 10261, 1105, 1729, 1387 and 11305.
A pseudoprime can be divisible by more than one pseudoprime: e.g. 126217, 278545, 294409, 825265.

Examples

			Since 2^13980 = 1 mod 13981 and 13981 = 11 * 31 * 41, 13981 is a pseudoprime, and it is divisible by 341, a smaller pseudoprime. 13981 is therefore in the sequence.
The pseudoprimes 75361, 129921, 348161, etc., are also divisible by 341.
		

Crossrefs

Programs

  • Mathematica
    lst1 = {}; lst2 = {}; r = 10^6; Do[If[! PrimeQ[n] && PowerMod[2, n - 1, n] == 1, AppendTo[lst1, n]], {n, 1, r, 2}]; l = Length[lst1]; Do[p = lst1[[a]]; b = 1; While[True, t = lst1[[b]]; If[p < 3*t, Break[]]; If[Divisible[p, t], AppendTo[lst2, p]; Break[]]; b++], {a, 2, l}]; lst2

A216667 Semiprime 2-pseudoprimes of the form 10k + 7.

Original entry on oeis.org

1387, 2047, 3277, 7957, 13747, 23377, 31417, 60787, 65077, 88357, 164737, 188057, 233017, 275887, 390937, 486737, 489997, 514447, 580337, 604117, 672487, 680627, 769567, 769757, 916327, 1092547, 1132657, 1145257, 1252697, 1293337, 1433407, 1493857, 1530787
Offset: 1

Views

Author

Marius Coman, Sep 13 2012

Keywords

Comments

A very interesting observation due to Peter Bala: about half of the terms from the sequence have the form p*(4*p - 3), where p is prime. For this form of Fermat pseudoprimes see the sequences A213812 and A215343.

Crossrefs

Subsequence of A214305.
Cf. A001567.

Programs

  • PARI
    list(lim)=my(v=List(),t); forprime(p=3,sqrtint(lim\=1), forprime(q=p+2,lim\p, t=p*q; if(t%10==7 && Mod(2,t)^t==2, listput(v,t)))); Set(v) \\ Charles R Greathouse IV, Jun 30 2017

A218483 Fermat pseudoprimes to base 2 which are congruent to 1 (mod 8).

Original entry on oeis.org

561, 1105, 1729, 1905, 2465, 4033, 4369, 4681, 6601, 8321, 8481, 10585, 11305, 12801, 15841, 16705, 18705, 18721, 23001, 23377, 25761, 30121, 30889, 31417, 31609, 33153, 34945, 39865, 41041, 41665, 46657, 52633, 62745, 65281, 74665, 75361, 83665, 85489
Offset: 1

Views

Author

Marius Coman, Oct 30 2012

Keywords

Comments

Old name was: Fermat pseudoprimes to base 2 of the form 8*p*n + p^2, where p is prime and n natural.
For p = 5 the formula becomes 40*n + 25. From the first 15 pseudoprimes divisible by 5, 12 are of the form 40*n + 25 (beside 3 of them which are of the form 40*n + 5). Conjecture: there are no pseudoprimes to base 2 of the form 40*n + 15.
Note: it can be seen that a pseudoprime can be written in this formula in more than one way: e.g., 561 = 8*3*23 + 3^2 = 8*11*5 + 11^2 = 8*17*2 + 17^2 or 1905 = 8*3*79 + 3^2 = 8*5*47 + 5^2.
Conjecture: If a Fermat pseudoprime to base 2 can be written as 8*p*n + p^2, where n is an integer and p one of its prime factors, then it can be written this way for any of its prime factors. Checked for all pseudoprimes from the sequence above.
Conjecture: If a Fermat pseudoprime to base 2 with two prime factors can be written as 8*p1*n + p1^2, where n is a natural number and p1 one of its two prime factors, then it can also be written as 8*p2*(-n) + p2^2, where p2 is the other prime factor. Checked for 4033 = 37*109(n = 9), 4369 = 17*257(n = 30), 4681 = 31*151(n = 15), 8321 = 53*157(n = 13), 18721 = 97*193(n = 12), 23377 = 97*241(n = 18), 31417 = 89*353(n = 33), 31609 = 73*433 (n = 45), 65281 = 97*673(n = 72), 85489 = 53*1613 (n = 195).
Conjecture: If a Fermat pseudoprime to base 2 cannot be written as 8*p*n + p^2, where n is an integer and p one of its prime factors, then it cannot be written this way for any of its prime factors. Checked for the following pseudoprimes: 341, 645, 1387, 2047, 2701, 2821, 3277, 4371, 5461, 7957, 10261, 13741, 13747, 13981, 14491, 15709, 19951, 29341, 31621, 42799, 49141, 49981, 55245, 60701, 60787, 63973, 65077, 68101, 72885, 80581, 83333.
Note: from the first 72 pseudoprimes, 39 can be written this way.
All three conjectures are true (obvious from new characterization). - Charles R Greathouse IV, Dec 07 2014

Crossrefs

Programs

  • Maple
    select(t -> 2 &^ t mod t = 2 and not isprime(t), [seq(1+8*j,j=0..10^5)]); # Robert Israel, Dec 07 2014
  • Mathematica
    Select[8 * Range[10^4] + 1, PowerMod[2, # - 1, #] == 1 && CompositeQ[#] &] (* Amiram Eldar, Mar 30 2021 *)
  • PARI
    is(n)=n%8==1 && Mod(2,n)^n==2 && !isprime(n) \\ Charles R Greathouse IV, Dec 07 2014

Extensions

Corrected by Charles R Greathouse IV, Dec 07 2014
New name from Charles R Greathouse IV, Dec 07 2014

A291554 Primes q for which there exists a prime p < q such that 2^q == 2^p (mod pq).

Original entry on oeis.org

31, 73, 89, 109, 113, 127, 151, 157, 193, 233, 241, 257, 281, 307, 313, 331, 337, 353, 397, 433, 457, 499, 577, 593, 601, 641, 673, 683, 811, 919, 953, 1013, 1049, 1103, 1153, 1163, 1201, 1217, 1249, 1321, 1327, 1399, 1429, 1433, 1459, 1471, 1553, 1601, 1613, 1657, 1709, 1721, 1753, 1777, 1789, 1801, 1873, 1913, 1933, 1993
Offset: 1

Views

Author

Thomas Ordowski, Aug 26 2017

Keywords

Comments

Largest prime divisors of pseudoprimes with two distinct prime factors.
All prime divisors of pseudoprimes with two prime factors are all primes except 2, 3, 5, 7, and 13.

Examples

			We have 2^31 == 2^11 == 2 (mod 11*31), so 31 is a term.
Note that 11*31 = 341 is a pseudoprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime@ Range[300], Function[p, AnyTrue[Prime@ Range[PrimePi[p] - 1], Function[q, PowerMod[2, q, p q] == PowerMod[2, p, p q]]]]] (* Michael De Vlieger, Aug 27 2017 *)
  • PARI
    is(n)=forprime(p=2,n-1, if(Mod(2,p*n)^gcd(n-1,p-1)==1, return(isprime(n)))); 0 \\ Charles R Greathouse IV, Aug 26 2017
    
  • PARI
    is(n)=if(n<9 || !isprime(n), return(0)); my(t=Mod(1,znorder(Mod(2,n))), nm1=n-1); t=chinese(t, Mod(1,2)); forstep(p=lift(t),n-2,t.mod, if(isprime(p) && Mod(2,p*n)^gcd(nm1,p-1)==1, return(1))); 0 \\ Charles R Greathouse IV, Aug 31 2017

Formula

Equivalent congruences: 2^(pq) == 2 (mod pq), 2^q == 2^p == 2 (mod pq), 2^(q-p) == 1 (mod pq), 2^gcd(p-1,q-1) == 1 (mod pq).

Extensions

More terms from Robert Israel, Aug 26 2017

A291617 Numbers p_1*p_2*...*p_k such that (2^p_1-1)*(2^p_2-1)*...*(2^p_k-1) is a Poulet number (A001567), where p_i are primes and k >= 2.

Original entry on oeis.org

230, 341, 1387, 2047, 2701, 3277, 4033, 4369, 4681, 5461, 7957, 8321, 10261, 13747, 14491, 15709, 18721, 19951, 23377, 31323, 31417, 31609, 31621, 35333, 38193, 42799, 49141, 49981, 60701, 60787, 65077, 65281, 80581, 83333, 85489
Offset: 1

Views

Author

Max Alekseyev and Thomas Ordowski, Aug 28 2017

Keywords

Comments

Rotkiewicz (1965) proved that (2^p-1)*(2^q-1) is a Poulet number if and only if p*q is a Poulet number, where p,q are distinct primes. It follows that this sequence contains all nonsquare terms in A214305.
Generally, the sequence includes all squarefree super-Poulet numbers.
The terms n = 230, 31323, 38193, ... are not in A050217. Are there infinitely many such terms?

Examples

			The number n = 341 = 11*31 is a term, because m = (2^11-1)*(2^31-1) = 4395899025409 is a Poulet number.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[10^4], CompositeQ@ # && SquareFreeQ@ # &], ! PrimeQ[#] && PowerMod[2, (# - 1), #] == 1 &@ Apply[Times, Map[2^# - 1 &, FactorInteger[#][[All, 1]] ]] &] (* Michael De Vlieger, Aug 30 2017 *)
  • PARI
    { is_A291617(n) = my(p,m); if(isprime(n),return(0)); p=factor(n); m=prod(i=1,matsize(p)[1], (2^p[i,1]-1)^p[i,2]); Mod(2,m)^m==2; }

A321790 a(n) is the smallest base a > 2 such that a^(k-1) != 1 (mod k), where k = A001567(n), the n-th Fermat pseudoprime to base 2.

Original entry on oeis.org

3, 3, 3, 5, 3, 7, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 7, 3, 3, 3, 7, 3, 5, 3, 3, 3, 3, 3, 3, 3, 7, 3, 3, 5, 3, 3, 3, 3, 13, 3, 3, 3, 3, 5, 3, 3, 3, 3, 7, 3, 3, 13, 5, 3, 7, 3, 3, 3, 3, 3, 7, 3, 3, 3, 3, 3, 11, 3, 5, 5, 3, 3, 3, 5, 5, 3, 5, 7, 5, 5, 3, 13, 3, 3
Offset: 1

Views

Author

Thomas Ordowski, Nov 19 2018

Keywords

Comments

a(n) <= A177415(n).
Each a(n) is an odd prime.
If k = A001567(n) is a Carmichael number, then a(n) = lpf(k).
Conjecture: if k = A001567(n) is semiprime, then a(n) < lpf(k).
The smallest numbers k = A001567(n) such that a(n) = prime(m) for m > 1 are 341, 1105, 1729, 75361, 29341, 162401, 334153, ... See A135720 > 561.
The smallest such semiprimes are 341, 2701, ?, 721801, ... Cf. A285549.

Examples

			The first Fermat pseudoprime to base 2 is 341, and 341 is not a Fermat pseudoprime to base 3, so a(1) = 3.
		

Crossrefs

Programs

  • Mathematica
    a[p_] := Module[{m=3}, While[Mod[m^(p-1), p] == 1, m++]; m]; psp = Select[Range[3, 1000000, 2], CompositeQ[ # ] && PowerMod[2, (# - 1), # ] == 1 &]; Map[a, psp] (* Amiram Eldar, Nov 19 2018 *)

Extensions

More terms from Amiram Eldar, Nov 19 2018
Showing 1-10 of 11 results. Next