cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050271 Numbers k such that k = floor(sqrt(k)*ceiling(sqrt(k))).

Original entry on oeis.org

1, 2, 3, 4, 7, 8, 9, 14, 15, 16, 23, 24, 25, 34, 35, 36, 47, 48, 49, 62, 63, 64, 79, 80, 81, 98, 99, 100, 119, 120, 121, 142, 143, 144, 167, 168, 169, 194, 195, 196, 223, 224, 225, 254, 255, 256, 287, 288, 289, 322, 323, 324, 359, 360, 361, 398, 399, 400
Offset: 1

Views

Author

Benoit Cloitre, May 10 2003

Keywords

Comments

Is a(n) asymptotic to C*n^(3/2) where 1/2 < C < 1?
Consists exactly of numbers of the forms j^2 - 2, j^2 - 1, and j^2. As such, is asymptotic to (1/9)*n^2. - Ivan Neretin, Feb 08 2017

Crossrefs

Programs

  • Maple
    a:=n->floor((n+4)/3)^2+irem(n+1,3)-2:
    seq(a(n),n=1..58); # Lorenzo Sauras Altuzarra, Jan 31 2023
  • Mathematica
    Select[Range@400, Floor[(r = Sqrt@#)*Ceiling@r] == # &] (* Ivan Neretin, Feb 08 2017 *)
    LinearRecurrence[{1,0,2,-2,0,-1,1},{1,2,3,4,7,8,9},60] (* Harvey P. Dale, Aug 10 2025 *)
  • PARI
    isok(n) = floor(sqrt(n)*ceil(sqrt(n))) == n; \\ Michel Marcus, Nov 22 2013
    
  • PARI
    Vec(x*(1 + x + x^2 - x^3 + x^4 - x^5) / ((1 - x)^3*(1 + x + x^2)^2) + O(x^100)) \\ Colin Barker, Feb 09 2017
    
  • Python
    def A050271(n):
        a, b = divmod(n+4,3)
        return a**2+b-2 # Chai Wah Wu, Aug 02 2022

Formula

a(n) = floor((n + 4)/3)^2 + ((n + 1) mod 3) - 2. - Ivan Neretin, Feb 08 2017
From Colin Barker, Feb 09 2017: (Start)
a(n) = a(n-1) + 2*a(n-3) - 2*a(n-4) - a(n-6) + a(n-7) for n > 7.
G.f.: x*(1 + x + x^2 - x^3 + x^4 - x^5) / ((1 - x)^3*(1 + x + x^2)^2).
(End)
From Amiram Eldar, Sep 14 2022: (Start)
Sum_{n>=1} 1/a(n) = 2 + Pi^2/6 - cot(sqrt(2)*Pi)*Pi/(2*sqrt(2)).
Sum_{n>=1} (-1)^(n+1)/a(n) = 1 + Pi^2/12 + cosec(sqrt(2)*Pi)*Pi/(2*sqrt(2)). (End)
a(n) = A087278(n+1) - 1 if n > 0. - Lorenzo Sauras Altuzarra, Jan 31 2023

Extensions

Data corrected by Michel Marcus and Benoit Cloitre, Nov 22 2013