cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050291 Number of double-free subsets of {1, 2, ..., n}.

Original entry on oeis.org

1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0

Views

Author

Keywords

Comments

A set is double-free if it does not contain both x and 2x.
So these are equally "half-free" subsets. - Gus Wiseman, Jul 08 2019

Examples

			From _Gus Wiseman_, Jul 08 2019: (Start)
The a(0) = 1 through a(5) = 20 double-free subsets:
  {}  {}   {}   {}     {}       {}
      {1}  {1}  {1}    {1}      {1}
           {2}  {2}    {2}      {2}
                {3}    {3}      {3}
                {1,3}  {4}      {4}
                {2,3}  {1,3}    {5}
                       {1,4}    {1,3}
                       {2,3}    {1,4}
                       {3,4}    {1,5}
                       {1,3,4}  {2,3}
                                {2,5}
                                {3,4}
                                {3,5}
                                {4,5}
                                {1,3,4}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {3,4,5}
                                {1,3,4,5}
(End)
		

References

  • Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3)
          /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2]))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 16 2019
  • Mathematica
    a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *)
    Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
  • PARI
    first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017

Formula

a(n) = a(n-1)*Fibonacci(b(2n)+2)/Fibonacci(b(2n)+1), Fibonacci = A000045, b = A007814.
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003

Extensions

Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019