A050291 Number of double-free subsets of {1, 2, ..., n}.
1, 2, 3, 6, 10, 20, 30, 60, 96, 192, 288, 576, 960, 1920, 2880, 5760, 9360, 18720, 28080, 56160, 93600, 187200, 280800, 561600, 898560, 1797120, 2695680, 5391360, 8985600, 17971200, 26956800, 53913600, 87091200, 174182400, 261273600, 522547200, 870912000
Offset: 0
Examples
From _Gus Wiseman_, Jul 08 2019: (Start) The a(0) = 1 through a(5) = 20 double-free subsets: {} {} {} {} {} {} {1} {1} {1} {1} {1} {2} {2} {2} {2} {3} {3} {3} {1,3} {4} {4} {2,3} {1,3} {5} {1,4} {1,3} {2,3} {1,4} {3,4} {1,5} {1,3,4} {2,3} {2,5} {3,4} {3,5} {4,5} {1,3,4} {1,3,5} {1,4,5} {2,3,5} {3,4,5} {1,3,4,5} (End)
References
- Wang, E. T. H. ``On Double-Free Sets of Integers.'' Ars Combin. 28, 97-100, 1989.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..4030 (terms n = 1..400 from T. D. Noe)
- Steven R. Finch, Triple-Free Sets of Integers [From Steven Finch, Apr 20 2019]
- Eric Weisstein's World of Mathematics, Double-Free Set.
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; `if`(n=0, 1, (F-> (p-> a(n-1)*F(p+3) /F(p+2))(padic[ordp](n, 2)))(j-> (<<0|1>, <1|1>>^j)[1, 2])) end: seq(a(n), n=0..50); # Alois P. Heinz, Jan 16 2019
-
Mathematica
a[n_] := a[n] = (b = IntegerExponent[2n, 2]; a[n-1]*Fibonacci[b+2]/Fibonacci[b+1]); a[1]=2; Table[a[n], {n, 1, 34}] (* Jean-François Alcover, Oct 10 2012, from first formula *) Table[Length[Select[Subsets[Range[n]],Intersection[#,#/2]=={}&]],{n,0,10}] (* Gus Wiseman, Jul 08 2019 *)
-
PARI
first(n)=my(v=vector(n)); v[1]=2; for(k=2,n, v[k]=v[k-1]*fibonacci(valuation(k,2)+3)/fibonacci(valuation(k,2)+2)); v \\ Charles R Greathouse IV, Feb 07 2017
Formula
a(n) = 2^n - A088808(n). - Reinhard Zumkeller, Oct 19 2003
Extensions
Extended with formula by Christian G. Bower, Sep 15 1999
a(0)=1 prepended by Alois P. Heinz, Jan 16 2019
Comments