cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050297 Number of scalars which can be constructed from the Riemann tensor and metric tensor in n dimensions.

Original entry on oeis.org

0, 1, 3, 14, 40, 90, 175, 308, 504, 780, 1155, 1650, 2288, 3094, 4095, 5320, 6800, 8568, 10659, 13110, 15960, 19250, 23023, 27324, 32200, 37700, 43875, 50778, 58464, 66990, 76415, 86800, 98208, 110704, 124355, 139230, 155400, 172938
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A005701.

Programs

  • Magma
    [0,1] cat [n*(n-1)*(n-2)*(n+3)/12: n in [3..60]]; // Vincenzo Librandi, May 13 2017
  • Mathematica
    CoefficientList[Series[x^2*(x^5 - 5*x^4 + 10*x^3 - 9*x^2 + 2*x - 1)/(x - 1)^5, {x, 0, 50}], x] (* G. C. Greubel, May 12 2017 *)
    Join[{0, 1}, Table[n (n - 1) (n - 2) (n + 3) / 12, {n, 3, 40}]] (* Vincenzo Librandi, May 13 2017 *)
  • PARI
    my(x='x+O('x^50)); concat([0], Vec(x^2*(x^5-5*x^4+10*x^3-9*x^2+2*x-1)/(x-1)^5)) \\ G. C. Greubel, May 12 2017
    

Formula

a(2) = 1, otherwise a(n) = n*(n-1)*(n-2)*(n+3)/12 = A005701(n-3).
From Chai Wah Wu, Aug 31 2016: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 7.
G.f.: x^2*(x^5 - 5*x^4 + 10*x^3 - 9*x^2 + 2*x - 1)/(x - 1)^5. (End)
From Amiram Eldar, May 22 2025: (Start)
Sum_{n>=2} 1/a(n) = 437/300.
Sum_{n>=2} (-1)^n/a(n) = 1547/300 - 32*log(2)/5. (End)