cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050403 Partial sums of A051877.

Original entry on oeis.org

1, 13, 70, 252, 714, 1722, 3696, 7260, 13299, 23023, 38038, 60424, 92820, 138516, 201552, 286824, 400197, 548625, 740278, 984676, 1292830, 1677390, 2152800, 2735460, 3443895, 4298931, 5323878, 6544720, 7990312, 9692584, 11686752, 14011536, 16709385, 19826709, 23414118, 27526668
Offset: 0

Views

Author

Barry E. Williams, Dec 21 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A051877.
Cf. A093564 ((7, 1) Pascal, column m=6).

Programs

  • GAP
    List([0..30], n-> (7*n+6)*Binomial(n+5, 5)/6); # G. C. Greubel, Aug 29 2019
  • Magma
    [(7*n+6)*Binomial(n+5, 5)/6: n in [0..30]]; // G. C. Greubel, Aug 29 2019
    
  • Maple
    Seq((7*n+6)*binomial(n+5, 5)/6, n=0..30); # G. C. Greubel, Aug 29 2019
  • Mathematica
    Table[(7*n+6)*Binomial[n+5, 5]/6, {n,0,30}] (* G. C. Greubel, Aug 29 2019 *)
  • PARI
    a(n) = binomial(n+5,5)*(7*n+6)/6; \\ Michel Marcus, Jan 09 2015
    
  • Sage
    [(7*n+6)*binomial(n+5, 5)/6 for n in (0..30)] # G. C. Greubel, Aug 29 2019
    

Formula

a(n) = C(n+5, 5)*(7*n+6)/6.
G.f.: (1+6*x)/(1-x)^7.
E.g.f.: (5! +8640*x +16200*x^2 +9600*x^3 +2250*x^4 +216*x^5 +7*x^6 )*exp(x)/5!. - G. C. Greubel, Aug 29 2019

Extensions

Corrected by T. D. Noe, Nov 09 2006
Terms a(28) onward added by G. C. Greubel, Aug 29 2019