A050404 Partial sums of A051878.
1, 14, 77, 280, 798, 1932, 4158, 8184, 15015, 26026, 43043, 68432, 105196, 157080, 228684, 325584, 454461, 623238, 841225, 1119272, 1469930, 1907620, 2448810, 3112200, 3918915, 4892706, 6060159, 7450912
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..40], n-> (4*n+3)*Binomial(n+5,5)/3); # G. C. Greubel, Aug 30 2019
-
Magma
[(4*n+3)*Binomial(n+5,5)/3: n in [0..40]]; // G. C. Greubel, Aug 30 2019
-
Maple
seq((4*n+3)*binomial(n+5,5)/3, n=0..40); # G. C. Greubel, Aug 30 2019
-
Mathematica
Table[(4*n+3)*Binomial[n+5,5]/3, {n,0,40}] (* Vladimir Joseph Stephan Orlovsky, Apr 19 2011, modified by G. C. Greubel, Aug 30 2019 *)
-
PARI
vector(40, n, (4*n-1)*binomial(n+4,5)/3) \\ G. C. Greubel, Aug 30 2019
-
Sage
[(4*n+3)*binomial(n+5,5)/3 for n in (0..30)] # G. C. Greubel, Aug 30 2019
Formula
a(n) = binomial(n+5, 5)*(4*n+3)/3.
G.f.: (1+7*x)/(1-x)^7.
E.g.f.: (360 +4680*x +9000*x^2 +5400*x^3 +1275*x^4 +123*x^5 +4*x^6 )*exp(x)/360. - G. C. Greubel, Aug 30 2019
Extensions
Corrected by T. D. Noe, Nov 09 2006