A050405 Partial sums of A051879.
1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
-
Maple
seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
-
Mathematica
Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]]] (* Harvey P. Dale, Aug 19 2012 *)
-
PARI
vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
-
Sage
[binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
Formula
a(n) = binomial(n+5, 5)*(3*n + 2)/2.
G.f.: (1+8*x)/(1-x)^7.
E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019
Extensions
Corrected by T. D. Noe, Nov 09 2006