cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050405 Partial sums of A051879.

Original entry on oeis.org

1, 15, 84, 308, 882, 2142, 4620, 9108, 16731, 29029, 48048, 76440, 117572, 175644, 255816, 364344, 508725, 697851, 942172, 1253868, 1647030, 2137850, 2744820, 3488940, 4393935, 5486481, 6796440, 8357104
Offset: 0

Views

Author

Barry E. Williams, Dec 21 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A051879.
Cf. A093644 ((9, 1) Pascal, column m=6).

Programs

  • GAP
    List([0..40], n-> Binomial(n+5, 5)*(3*n+2)/2); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n+5, 5)*(3*n+2)/2: n in [0..40]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    seq(binomial(n+5, 5)*(3*n+2)/2, n=0..40); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Accumulate[Accumulate[Table[(n+1)(n+2)(n+3)(9n+4)/24,{n,0,40}]]] (* Harvey P. Dale, Aug 19 2012 *)
  • PARI
    vector(41, n, binomial(n+4, 5)*(3*n-1)/2) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [binomial(n+5, 5)*(3*n+2)/2 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = binomial(n+5, 5)*(3*n + 2)/2.
G.f.: (1+8*x)/(1-x)^7.
E.g.f.: (240 +3360*x +6600*x^2 +4000*x^3 +950*x^4 +92*x^5 +3* x^6) *exp(x)/240. - G. C. Greubel, Oct 30 2019

Extensions

Corrected by T. D. Noe, Nov 09 2006