cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050406 Partial sums of A051880.

Original entry on oeis.org

1, 16, 91, 336, 966, 2352, 5082, 10032, 18447, 32032, 53053, 84448, 129948, 194208, 282948, 403104, 562989, 772464, 1043119, 1388464, 1824130, 2368080, 3040830, 3865680, 4868955, 6080256, 7532721, 9263296
Offset: 0

Views

Author

Barry E. Williams, Dec 21 1999

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.

Crossrefs

Cf. A051880.
Cf. A093645 ((10, 1) Pascal, column m=6).

Programs

  • GAP
    List([0..40], n-> Binomial(n+5,5)*(5*n+3)/3); # G. C. Greubel, Oct 30 2019
  • Magma
    [Binomial(n+5,5)*(5*n+3)/3: n in [0..40]]; // G. C. Greubel, Oct 30 2019
    
  • Maple
    seq(binomial(n+5,5)*(5*n+3)/3, n=0..40); # G. C. Greubel, Oct 30 2019
  • Mathematica
    Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],3] (* Harvey P. Dale, Nov 13 2013 *)
  • PARI
    vector(41, n, binomial(n+4,5)*(5*n-2)/3) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [binomial(n+5,5)*(5*n+3)/3 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = C(n+5, 5)*(5*n + 3)/3.
G.f.: (1+9*x)/(1-x)^7.
E.g.f.: (360 +5400*x +10800*x^2 +6600*x^3 +1575*x^4 +153*x^5 +5*x^6) *exp(x)/360. - G. C. Greubel, Oct 30 2019

Extensions

Corrected by T. D. Noe, Nov 09 2006