A050406 Partial sums of A051880.
1, 16, 91, 336, 966, 2352, 5082, 10032, 18447, 32032, 53053, 84448, 129948, 194208, 282948, 403104, 562989, 772464, 1043119, 1388464, 1824130, 2368080, 3040830, 3865680, 4868955, 6080256, 7532721, 9263296
Offset: 0
References
- A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (7,-21,35,-35,21,-7,1).
Programs
-
GAP
List([0..40], n-> Binomial(n+5,5)*(5*n+3)/3); # G. C. Greubel, Oct 30 2019
-
Magma
[Binomial(n+5,5)*(5*n+3)/3: n in [0..40]]; // G. C. Greubel, Oct 30 2019
-
Maple
seq(binomial(n+5,5)*(5*n+3)/3, n=0..40); # G. C. Greubel, Oct 30 2019
-
Mathematica
Nest[Accumulate[#]&,Table[n(n+1)(10n-7)/6,{n,0,50}],3] (* Harvey P. Dale, Nov 13 2013 *)
-
PARI
vector(41, n, binomial(n+4,5)*(5*n-2)/3) \\ G. C. Greubel, Oct 30 2019
-
Sage
[binomial(n+5,5)*(5*n+3)/3 for n in (0..40)] # G. C. Greubel, Oct 30 2019
Formula
a(n) = C(n+5, 5)*(5*n + 3)/3.
G.f.: (1+9*x)/(1-x)^7.
E.g.f.: (360 +5400*x +10800*x^2 +6600*x^3 +1575*x^4 +153*x^5 +5*x^6) *exp(x)/360. - G. C. Greubel, Oct 30 2019
Extensions
Corrected by T. D. Noe, Nov 09 2006