cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050410 Truncated square pyramid numbers: a(n) = Sum_{k = n..2*n-1} k^2.

Original entry on oeis.org

0, 1, 13, 50, 126, 255, 451, 728, 1100, 1581, 2185, 2926, 3818, 4875, 6111, 7540, 9176, 11033, 13125, 15466, 18070, 20951, 24123, 27600, 31396, 35525, 40001, 44838, 50050, 55651, 61655, 68076, 74928, 82225, 89981, 98210, 106926, 116143
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 22 1999

Keywords

Comments

Starting with offset 1 = binomial transform of [1, 12, 25, 14, 0, 0, 0, ...]. - Gary W. Adamson, Jan 09 2009

Examples

			1^2 + 1;
2^2 + 3^2 = 13;
3^2 + 4^2 + 5^2 = 50; ...
		

Crossrefs

Programs

  • GAP
    List([0..40], n-> n*(7*n-1)*(2*n-1)/6); # G. C. Greubel, Oct 30 2019
  • Magma
    [n*(7*n-1)*(2*n-1)/6: n in [0..40]]; // Vincenzo Librandi, Apr 27 2012
    
  • Maple
    seq(n*(7*n-1)*(2*n-1)/6, n=0..36); # Zerinvary Lajos, Dec 01 2006
  • Mathematica
    Table[Sum[k^2,{k,n,2n-1}],{n,0,40}] (* or *) LinearRecurrence[{4,-6,4, -1}, {0,1,13,50},40] (* Harvey P. Dale, Feb 29 2012 *)
  • PARI
    for(n=1,100,print1(sum(i=0,n-1,(n+i)^2),","))
    
  • PARI
    vector(40, n, (n-1)*(7*n-8)*(2*n-3)/6) \\ G. C. Greubel, Oct 30 2019
    
  • Sage
    [n*(7*n-1)*(2*n-1)/6 for n in (0..40)] # G. C. Greubel, Oct 30 2019
    

Formula

a(n) = n*(7*n-1)*(2*n-1)/6.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=0, a(1)=1, a(2)=13, a(3)=50. - Harvey P. Dale, Feb 29 2012
G.f.: x*(1 + 9*x + 4*x^2)/(1-x)^4. - Colin Barker, Mar 23 2012
E.g.f.: x*(6 + 33*x + 14*x^2)*exp(x)/6. - G. C. Greubel, Oct 30 2019