cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050435 a(n) = composite(composite(n)), where composite = A002808, composite numbers.

Original entry on oeis.org

9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1

Views

Author

Michael Lugo (mlugo(AT)thelabelguy.com), Dec 22 1999

Keywords

Comments

Second-order composite numbers.
Composites (A002808) with composite (A002808) subscripts. a(n) U A022449(n) = A002808(n). Subsequence of A175251 (composites (A002808) with nonprime (A018252) subscripts), a(n) = A175251(n+1) for n >= 1. - Jaroslav Krizek, Mar 14 2010

Examples

			The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
		

Crossrefs

Programs

  • Haskell
    a050435 = a002808 . a002808
    a050435_list = map a002808 a002808_list
    -- Reinhard Zumkeller, Jan 12 2013
    
  • Mathematica
    Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ]
    With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
  • PARI
    composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler
    a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
    
  • Python
    from sympy import composite
    def a(n): return composite(composite(n))
    print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021

Formula

Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(n)).
a(n) = n + 2n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jun 25 2017

Extensions

More terms from Robert G. Wilson v, Dec 20 2000