A050435 a(n) = composite(composite(n)), where composite = A002808, composite numbers.
9, 12, 15, 16, 18, 21, 24, 25, 26, 28, 32, 33, 34, 36, 38, 39, 40, 42, 45, 48, 49, 50, 51, 52, 55, 56, 57, 60, 63, 64, 65, 68, 69, 70, 72, 74, 76, 77, 78, 80, 81, 84, 86, 87, 88, 90, 91, 93, 94, 95, 98, 100, 102, 104, 105, 106, 110, 111, 112, 115, 116, 117, 118, 119
Offset: 1
Examples
The 2nd composite number is 6 and the 6th composite number is 12, so a(2) = 12. a(100) = A002808(A002808(100)) = A002808(133) = 174.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- N. Fernandez, An order of primeness, F(p)
- N. Fernandez, An order of primeness [cached copy, included with permission of the author]
Programs
-
Haskell
a050435 = a002808 . a002808 a050435_list = map a002808 a002808_list -- Reinhard Zumkeller, Jan 12 2013
-
Mathematica
Select[ Range[ 6, 150 ], ! PrimeQ[ # ] && ! PrimeQ[ # - PrimePi[ # ] - 1 ] & ] With[{cmps=Select[Range[200],CompositeQ]},Table[cmps[[cmps[[n]]]],{n,70}]] (* Harvey P. Dale, Feb 18 2018 *)
-
PARI
composite(n)=my(k=-1); while(-n + n += -k + k=primepi(n), ); n \\ M. F. Hasler a(n)=composite(composite(n)) \\ Charles R Greathouse IV, Jun 25 2017
-
Python
from sympy import composite def a(n): return composite(composite(n)) print([a(n) for n in range(1, 65)]) # Michael S. Branicky, Sep 12 2021
Formula
Let C(n) be the n-th composite number, with C(1)=4. Then these are numbers C(C(n)).
a(n) = n + 2n/log n + O(n/log^2 n). - Charles R Greathouse IV, Jun 25 2017
Extensions
More terms from Robert G. Wilson v, Dec 20 2000
Comments