A050449 a(n) = Sum_{d|n, d == 1 (mod 4)} d.
1, 1, 1, 1, 6, 1, 1, 1, 10, 6, 1, 1, 14, 1, 6, 1, 18, 10, 1, 6, 22, 1, 1, 1, 31, 14, 10, 1, 30, 6, 1, 1, 34, 18, 6, 10, 38, 1, 14, 6, 42, 22, 1, 1, 60, 1, 1, 1, 50, 31, 18, 14, 54, 10, 6, 1, 58, 30, 1, 6, 62, 1, 31, 1, 84, 34, 1, 18, 70, 6, 1, 10, 74, 38, 31, 1
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Mariusz Skałba, A Note on Sums of Two Squares and Sum-of-divisors Functions, INTEGERS 20A (2020) A92.
Crossrefs
Programs
-
Maple
A050449 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if d mod 4 = 1 then a := a+d ; end if; end do: a; end proc: seq(A050449(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
-
Mathematica
a[n_] := DivisorSum[n, Boole[Mod[#, 4] == 1]*#&]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Jan 30 2018 *)
-
PARI
a(n) = sumdiv(n, d, d*((d % 4) == 1)); \\ Michel Marcus, Jan 30 2018
Formula
G.f.: Sum_{n>=0} (4*n+1)*x^(4*n+1)/(1-x^(4*n+1)). - Vladeta Jovovic, Nov 14 2002
G.f.: Sum_{n >= 1} x^n*(1 + 3*x^(4*n))/(1 - x^(4*n))^2. - Peter Bala, Dec 19 2021
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023
Extensions
More terms from Vladeta Jovovic, Nov 14 2002
More terms from Reinhard Zumkeller, Apr 18 2006
Comments