A050452 a(n) = Sum_{d|n, d == 3 (mod 4)} d.
0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 11, 3, 0, 7, 18, 0, 0, 3, 19, 0, 10, 11, 23, 3, 0, 0, 30, 7, 0, 18, 31, 0, 14, 0, 42, 3, 0, 19, 42, 0, 0, 10, 43, 11, 18, 23, 47, 3, 7, 0, 54, 0, 0, 30, 66, 7, 22, 0, 59, 18, 0, 31, 73, 0, 0, 14, 67, 0, 26, 42, 71, 3, 0, 0, 93, 19, 18
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000 (first 1000 terms from Harvey P. Dale)
- Mariusz SkaĆba, A Note on Sums of Two Squares and Sum-of-divisors Functions, INTEGERS 20A (2020) A92.
Crossrefs
Programs
-
Maple
A050452 := proc(n) a := 0 ; for d in numtheory[divisors](n) do if d mod 4 = 3 then a := a+d ; end if; end do: a; end proc: seq(A050452(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
-
Mathematica
Table[Total[Select[Divisors[n],Mod[#,4]==3&]],{n,80}] (* Harvey P. Dale, Jul 07 2013 *)
-
PARI
a(n) = sumdiv(n, d, d*((d % 4) == 3)); \\ Amiram Eldar, Nov 26 2023
Formula
G.f.: Sum_{k>=1} (4*k - 1)*x^(4*k-1)/(1 - x^(4*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023