cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050452 a(n) = Sum_{d|n, d == 3 (mod 4)} d.

Original entry on oeis.org

0, 0, 3, 0, 0, 3, 7, 0, 3, 0, 11, 3, 0, 7, 18, 0, 0, 3, 19, 0, 10, 11, 23, 3, 0, 0, 30, 7, 0, 18, 31, 0, 14, 0, 42, 3, 0, 19, 42, 0, 0, 10, 43, 11, 18, 23, 47, 3, 7, 0, 54, 0, 0, 30, 66, 7, 22, 0, 59, 18, 0, 31, 73, 0, 0, 14, 67, 0, 26, 42, 71, 3, 0, 0, 93, 19, 18
Offset: 1

Views

Author

N. J. A. Sloane, Dec 23 1999

Keywords

Crossrefs

Cf. Sum_{d|n, d=k-1 mod k} d: A000593 (k=2), A078182 (k=3), this sequence (k=4).

Programs

  • Maple
    A050452 := proc(n)
            a := 0 ;
            for d in numtheory[divisors](n) do
                    if d mod 4 = 3 then
                            a := a+d ;
                    end if;
            end do:
            a;
    end proc:
    seq(A050452(n),n=1..40) ; # R. J. Mathar, Dec 20 2011
  • Mathematica
    Table[Total[Select[Divisors[n],Mod[#,4]==3&]],{n,80}] (* Harvey P. Dale, Jul 07 2013 *)
  • PARI
    a(n) = sumdiv(n, d, d*((d % 4) == 3)); \\ Amiram Eldar, Nov 26 2023

Formula

a(n) = A000593(n) - A050449(n). - Reinhard Zumkeller, Apr 18 2006
G.f.: Sum_{k>=1} (4*k - 1)*x^(4*k-1)/(1 - x^(4*k-1)). - Ilya Gutkovskiy, Mar 21 2017
Sum_{k=1..n} a(k) = c * n^2 + O(n*log(n)), where c = Pi^2/48 = 0.205616... (A245058). - Amiram Eldar, Nov 26 2023