cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050492 Thickened cube numbers: a(n) = n*(n^2 + (n-1)^2) + (n-1)*2*n*(n-1).

Original entry on oeis.org

1, 14, 63, 172, 365, 666, 1099, 1688, 2457, 3430, 4631, 6084, 7813, 9842, 12195, 14896, 17969, 21438, 25327, 29660, 34461, 39754, 45563, 51912, 58825, 66326, 74439, 83188, 92597, 102690, 113491, 125024, 137313, 150382, 164255, 178956
Offset: 1

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 27 1999

Keywords

Comments

In other words, positive integers k such that 2*k - 1 is a perfect cube. - Altug Alkan, Apr 15 2016
a(n) represents the first term in a sum of (2*n - 1)^3 consecutive integers which equals (2*n - 1)^6. - Patrick J. McNab, Dec 24 2016

Examples

			       * *      *      * *
a(2) =  *   +  * *  +   *  = 14.
       * *      *      * *
		

Crossrefs

Programs

  • Magma
    [n*(4*n^2-6*n+3): n in [1..40]]; // Vincenzo Librandi, Oct 03 2011
    
  • Mathematica
    Table[n(n^2+(n-1)^2)+(n-1)2n(n-1),{n,40}] (* or *) LinearRecurrence[ {4,-6,4,-1},{1,14,63,172},40] (* Harvey P. Dale, Oct 02 2011 *)
  • PARI
    a(n)=n*(4*n^2-6*n+3) \\ Charles R Greathouse IV, Nov 10 2015

Formula

a(n) = n*(4*n^2-6*n+3).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(1)=1, a(2)=14, a(3)=63, a(4)=172. - Harvey P. Dale, Oct 02 2011
G.f.: x*(1+10*x+13*x^2)/(1-4*x+6*x^2-4*x^3+x^4). - Colin Barker, Jan 04 2012
a(n) = ((2n-1)^3 + 1)/2. - Dave Durgin, May 07 2014
E.g.f.: x*(4*x^2 + 6*x + 1)*exp(x). - G. C. Greubel, Apr 15 2016