cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A152725 a(n) = n*(n+1)*(n^4 + 2*n^3 - 2*n^2 - 3*n + 3)/2.

Original entry on oeis.org

0, 1, 63, 666, 3430, 12195, 34461, 83188, 178956, 352485, 647515, 1124046, 1861938, 2964871, 4564665, 6825960, 9951256, 14186313, 19825911, 27219970, 36780030, 48986091, 64393813, 83642076, 107460900, 136679725, 172236051, 215184438
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A062392, A062393 (for 5th powers), A011934, A152726 (for 7th powers).

Programs

  • Magma
    [n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2: n in [0..50]]; // G. C. Greubel, Sep 01 2018
  • Mathematica
    k=0;lst={k};Do[k=n^6-k;AppendTo[lst,k],{n,1,5!}];lst
    LinearRecurrence[{7,-21,35,-35,21,-7,1}, {0,1,63,666,3430,12195,34461}, 50] (* G. C. Greubel, Sep 01 2018 *)
    CoefficientList[Series[-((x (1+56 x+246 x^2+56 x^3+x^4))/(-1+x)^7),{x,0,30}],x] (* Harvey P. Dale, Aug 03 2024 *)
  • PARI
    a(n)=n*(n+1)*(n^4+2*n^3-2*n^2-3*n+3)/2 \\ Charles R Greathouse IV, Oct 07 2015
    

Formula

a(n) = n^6 - (n-1)^6 + (n-2)^6 - ... + ((-1)^n)*0^6.
G.f.: x*(1 + 56*x + 246*x^2 + 56*x^3 + x^4) / (1-x)^7. - R. J. Mathar, Jul 08 2013
a(n) = A050492(A000217(n)). - Kelvin Voskuijl, Jun 18 2025
E.g.f.: exp(x)*x*(2 + 61*x + 160*x^2 + 95*x^3 + 18*x^4 + x^5)/2. - Stefano Spezia, Jun 19 2025

Extensions

Offset set to 0 by R. J. Mathar, Aug 15 2010

A175113 a(n) = ((2*n + 1)^6 + 1)/2.

Original entry on oeis.org

1, 365, 7813, 58825, 265721, 885781, 2413405, 5695313, 12068785, 23522941, 42883061, 74017945, 122070313, 193710245, 297411661, 443751841, 645733985, 919132813, 1282863205, 1759371881, 2375052121, 3160681525, 4151882813
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Convolution of the finite sequence 1, 358, 5279, 11764, 5279, 358, 1 with A000579. Partial sums of A175114.
Subsequence of A001844 because a(n)=(A050492(n+1)-1)^2+A050492(n+1)^2. - Bruno Berselli, Dec 28 2010
a(n) is also the first integer in a sum of (2*n + 1)^6 consecutive integers that equals (2*n + 1)^12. - Patrick J. McNab, Dec 26 2016

Programs

  • Magma
    I:=[1, 365, 7813, 58825, 265721, 885781, 2413405]; [n le 7 select I[n] else 7*Self(n-1) - 21*Self(n-2) + 35*Self(n-3) - 35*Self(n-4) + 21*Self(n-5) - 7*Self(n-6) + Self(n-7): n in [1..40]]; // Vincenzo Librandi, Dec 20 2012
  • Mathematica
    CoefficientList[Series[(1 + 358*x + 5279*x^2 + 11764*x^3 + 5279*x^4 + 358*x^5 + x^6)/(1 - x)^7, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 20 2012 *)

Formula

a(n)= 7*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7).
G.f.: (1+358*x+5279*x^2+11764*x^3+5279*x^4+358*x^5+x^6)/(1-x)^7.
a(n) = (2*n^2+2*n+1)*(16*n^4+32*n^3+20*n^2+4*n+1). - Bruno Berselli, Dec 27 2010

A050533 Thickened pyramidal numbers: a(n) = 2*(n+1)*n + Sum_{i=1..n} (4*i*(i-1) + 1).

Original entry on oeis.org

0, 5, 22, 59, 124, 225, 370, 567, 824, 1149, 1550, 2035, 2612, 3289, 4074, 4975, 6000, 7157, 8454, 9899, 11500, 13265, 15202, 17319, 19624, 22125, 24830, 27747, 30884, 34249, 37850, 41695, 45792, 50149, 54774, 59675, 64860, 70337, 76114, 82199, 88600, 95325
Offset: 0

Views

Author

Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Dec 29 1999

Keywords

Comments

This sequence is the partial sums of A053755. - J. M. Bergot, May 31 2012

Crossrefs

Programs

  • Magma
    I:=[0, 5, 22, 59]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 27 2012
  • Mathematica
    CoefficientList[Series[x*(5+2*x+x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Apr 27 2012 *)
    LinearRecurrence[{4,-6,4,-1},{0,5,22,59},40] (* Harvey P. Dale, May 08 2012 *)
  • PARI
    a(n)=n*(4*n^2+6*n+5)/3 \\ Charles R Greathouse IV, Apr 16 2012
    

Formula

a(n) = (1/3)*n*(5 + 6*n + 4*n^2) = binomial(2*n+1, 3) + 2*(n+1)*n = A000447(n) + 4*A000217(n).
G.f.: x*(5+2*x+x^2)/(1-x)^4. - Colin Barker, Apr 16 2012
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Apr 27 2012
E.g.f.: exp(x)*x*(15 + 18*x + 4*x^2)/3. - Elmo R. Oliveira, Aug 08 2025

A268201 a(n) = 4*n^3 - 6*n^2 + 3*n - 1.

Original entry on oeis.org

0, 13, 62, 171, 364, 665, 1098, 1687, 2456, 3429, 4630, 6083, 7812, 9841, 12194, 14895, 17968, 21437, 25326, 29659, 34460, 39753, 45562, 51911, 58824, 66325, 74438, 83187, 92596, 102689, 113490, 125023, 137312, 150381, 164254, 178955, 194508, 210937, 228266, 246519, 265720
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 16 2016

Keywords

Comments

Nonnegative numbers n such that 2*n+1 is a cube.
Or, (y^k-1)/2 for k odd. - N. J. A. Sloane, Mar 05 2022

Examples

			a(1) = 0 because 4*1^3 - 6*1^2 + 3*1 - 1 = 0.
a(2) = 13 because 4*2^3 - 6*2^2 + 3*2 - 1 = 13.
		

References

  • H. Brocard, #2158, L'Intermédiaire des Mathématiciens, 10 (1903), 282-283

Crossrefs

Cf. nonnegative numbers n such that 2*n + k is a cube: A271828 (k=-3), A050492 (k=-1), this sequence (k=1).

Programs

  • Magma
    [((2*n-1)^3-1)/2: n in [0..41]];
    
  • Maple
    A268201:=n->4*n^3 - 6*n^2 + 3*n - 1: seq(A268201(n), n=1..80); # Wesley Ivan Hurt, Apr 17 2016
  • Mathematica
    Table[((2 n - 1)^3 - 1)/2, {n, 41}] (* or *)
    CoefficientList[Series[(13*x + 10*x^2 + x^3)/(-1 + x)^4, {x, 0, 40}],
       x] (* Michael De Vlieger, Apr 16 2016 *)
  • PARI
    lista(nn) = for(n=1, nn, print1(4*n^3-6*n^2+3*n-1, ", ")); \\ Altug Alkan, Apr 17 2016

Formula

G.f.: (13*x + 10*x^2 + x^3)/(-1 + x)^4. - Michael De Vlieger, Apr 16 2016
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4. - Wesley Ivan Hurt, Apr 17 2016

A274324 Number of partitions of n^3 into at most two parts.

Original entry on oeis.org

1, 1, 5, 14, 33, 63, 109, 172, 257, 365, 501, 666, 865, 1099, 1373, 1688, 2049, 2457, 2917, 3430, 4001, 4631, 5325, 6084, 6913, 7813, 8789, 9842, 10977, 12195, 13501, 14896, 16385, 17969, 19653, 21438, 23329, 25327, 27437, 29660, 32001, 34461, 37045, 39754
Offset: 0

Views

Author

Colin Barker, Jun 18 2016

Keywords

Crossrefs

A subsequence of A008619.
Cf. A099392 (n^2), A274325 (n^5).
Cf. also A050492.

Programs

  • Magma
    [(3+(-1)^n+2*n^3)/4 : n in [0..50]]; // Wesley Ivan Hurt, Jun 25 2016
  • Maple
    A274324:=n->(3+(-1)^n+2*n^3)/4: seq(A274324(n), n=0..50); # Wesley Ivan Hurt, Jun 25 2016
  • Mathematica
    Table[(3+(-1)^n+2*n^3)/4, {n, 0, 50}] (* Wesley Ivan Hurt, Jun 25 2016 *)
  • PARI
    \\ b(n) is the coefficient of x^n in the g.f. 1/((1-x)*(1-x^2)).
    b(n) = (3+(-1)^n+2*n)/4
    vector(50, n, n--; b(n^3))
    

Formula

Coefficient of x^(n^3) in 1/((1-x)*(1-x^2)).
a(n) = A008619(n^3).
a(n) = (3+(-1)^n+2*n^3)/4.
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5) for n>4.
G.f.: (1-2*x+4*x^2+3*x^3) / ((1-x)^4*(1+x)).
From Stefano Spezia, Sep 28 2022: (Start)
a(n) = A050492((n+1)/2) for n odd.
E.g.f.: ((2 + x + 3*x^2 + x^3)*cosh(x) + (1 + x + 3*x^2 + x^3)*sinh(x))/2. (End)

A359844 a(n) = ((2*n+1)^8 + 1)/2.

Original entry on oeis.org

1, 3281, 195313, 2882401, 21523361, 107179441, 407865361, 1281445313, 3487878721, 8491781521, 18911429681, 39155492641, 76293945313, 141214768241, 250123206481, 426445518721, 703204309121, 1125937695313, 1756239726961, 2676004630241, 3992462614561, 5844100138801
Offset: 0

Views

Author

Jianing Song, Jan 15 2023

Keywords

Crossrefs

Cf. {((2*n+1)^k + 1)/2}: A000012 (k=0), A001477 (k=1), A219086 (k=2), A050492 (k=3), A175110 (k=4), A175113 (k=6), this sequence (k=8).

Programs

  • Mathematica
    ((2*Range[0, 25] + 1)^8 + 1)/2 (* Paolo Xausa, Jan 23 2025 *)
  • PARI
    a(n) = ((2*n+1)^8 + 1)/2
    
  • Python
    def A359844(n): return ((n<<1)+1)**8+1>>1 # Chai Wah Wu, Jan 15 2023

Formula

a(n) = A359499(n)/A359498(n) = 16 * A359498(n) + 1.

A271828 a(n) = 4*n^3 - 18*n^2 + 27*n - 12.

Original entry on oeis.org

1, 2, 15, 64, 173, 366, 667, 1100, 1689, 2458, 3431, 4632, 6085, 7814, 9843, 12196, 14897, 17970, 21439, 25328, 29661, 34462, 39755, 45564, 51913, 58826, 66327, 74440, 83189, 92598, 102691, 113492, 125025, 137314, 150383, 164256, 178957, 194510, 210939, 228268, 246521, 265722
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 15 2016

Keywords

Comments

This sequence lists all positive integers n such that 2*n - 3 is a cube. Only for first term 2*n - 3 generates a negative cube that is -1. - Altug Alkan, Apr 15 2016

Crossrefs

Cf. positive integers n such that 2*n + k is a cube: this sequence (k=-3), A050492 (k=-1), A268201 (k=1).

Programs

  • Magma
    [((2*n-1)^3+3)/2: n in [0..40]];
    
  • Mathematica
    Table[((2 n - 1)^3 + 3)/2, {n, 0, 41}] (* or *)
    Rest@ CoefficientList[Series[x (1 - 2 x + 13 x^2 + 12 x^3)/(1 - x)^4, {x, 0, 42}], x] (* Michael De Vlieger, Apr 16 2016 *)
    LinearRecurrence[{4,-6,4,-1},{1,2,15,64},70] (* Harvey P. Dale, Jun 06 2022 *)
  • PARI
    lista(nn) = for(n=0, nn, print1(((2*n-1)^3+3)/2, ", ")); \\ Altug Alkan, Apr 15 2016

Formula

a(n+1) = A050492(n)+1.
G.f.: x*(1 - 2*x + 13*x^2 + 12*x^3)/(1 - x)^4. - Ilya Gutkovskiy, Apr 15 2016
Showing 1-7 of 7 results.