A050493 a(n) = sum of binary digits of n-th triangular number.
0, 1, 2, 2, 2, 4, 3, 3, 2, 4, 5, 2, 4, 5, 4, 4, 2, 4, 5, 6, 4, 6, 7, 3, 4, 4, 7, 6, 5, 6, 5, 5, 2, 4, 5, 6, 5, 8, 6, 4, 5, 7, 6, 6, 8, 4, 5, 4, 4, 5, 8, 6, 5, 7, 7, 3, 6, 7, 8, 7, 6, 7, 6, 6, 2, 4, 5, 6, 5, 8, 7, 8, 4, 6, 8, 5, 8, 9, 4, 5, 5, 8, 7, 8, 8, 7, 8, 8, 7, 8, 12, 5, 6, 5, 6, 5, 4, 5, 8, 7, 8
Offset: 0
Links
Programs
-
Haskell
a050493 = a000120 . a000217 -- Reinhard Zumkeller, Feb 04 2013
-
Mathematica
f[n_]:=Plus@@IntegerDigits[n,2]; lst={};Do[t=n*(n+1)/2;AppendTo[lst,f[t]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Oct 10 2009 *) Total[IntegerDigits[#,2]]&/@Accumulate[Range[0,100]] (* Harvey P. Dale, Jan 22 2012 *)
-
PARI
a(n)=hammingweight(n*(n+1)) \\ Charles R Greathouse IV, Nov 10 2015
Formula
a(n) = Sum_{i=1..floor(log_b(c(n)))+1} (floor(c(n)/b^(i-1)) - floor(c(n)/b^i)*b), b=2, n >= 1, a(0)=0, c(n)=A000217(n).
a(n) = [x^(n*(n+1)/2)] (1/(1 - x))*Sum_{k>=0} x^(2^k)/(1 + x^(2^k)). - Ilya Gutkovskiy, Mar 27 2018
Comments