cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A050531 Number of multigraphs with loops on 3 nodes with n edges.

Original entry on oeis.org

1, 2, 6, 14, 28, 52, 93, 152, 242, 370, 546, 784, 1103, 1512, 2040, 2706, 3534, 4554, 5803, 7304, 9108, 11252, 13780, 16744, 20205, 24206, 28826, 34126, 40176, 47056, 54857, 63648, 73542, 84630, 97014, 110808, 126139, 143108, 161868, 182546, 205282
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Comments

a(n) is also the number of multigraphs (no loops allowed) on 3 nodes with n edges of two colors. - Geoffrey Critzer, Aug 10 2015

Crossrefs

Column k=3 of A290428.

Programs

  • Maple
    a076118:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0,a(1)=1,a(2)=1,a(3)=-1}, a(n), remember):
    f:= n -> ceil((-1)^n*a076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5):
    map(f, [$0..100]); # Robert Israel, Aug 07 2015
  • Mathematica
    < 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
    CoefficientList[Series[(x^6 + x^4 + 2 x^3 + x^2 + 1)/((x^3 - 1)^2 (x^2 - 1)^2 (x - 1)^2), {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2015 *)
  • PARI
    Vec((x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2) + O(x^40)) \\ Colin Barker, Jul 07 2019

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2).
a(n) = ceiling((-1)^n*A076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5). - Robert Israel, Aug 07 2015
a(n) = (A+B+C)/6 where A = binomial(n+5,5); B = (n+2)*(n+3)*(n+4)/8 if n even, B = (n+1)*(n+3)*(n+5)/8 if n odd; C = 2*((n/3) + 1) if n divisible by 3, C = 0 if n not divisible by 3. - David Pasino, Jul 06 2019
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>11. - Colin Barker, Jul 07 2019