cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A050624 Let b(n) = A050623(n) = smallest n-digit number divisible by 3^n; sequence gives b(n)/3^n.

Original entry on oeis.org

1, 2, 4, 13, 42, 138, 458, 1525, 5081, 16936, 56451, 188168, 627226, 2090752, 6969172, 23230574, 77435244, 258117480, 860391598, 2867971991, 9559906636, 31866355454, 106221184845, 354070616148, 1180235387158, 3934117957192
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Cf. A050623.

Formula

a(n) = ceiling(10^(n-1)/3^n). - Vladeta Jovovic, Feb 14 2003

Extensions

More terms from Erich Friedman, Feb 19 2000

A050625 Divisible by 3^k (where k is digit length of a(n)).

Original entry on oeis.org

3, 6, 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, 99, 108, 135, 162, 189, 216, 243, 270, 297, 324, 351, 378, 405, 432, 459, 486, 513, 540, 567, 594, 621, 648, 675, 702, 729, 756, 783, 810, 837, 864, 891, 918, 945, 972, 999, 1053, 1134, 1215, 1296, 1377, 1458
Offset: 1

Views

Author

Patrick De Geest, Jun 15 1999

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[3^n*Range[Ceiling[10^(n-1)/3^n],Floor[(10^n-1)/3^n]],{n,4}]] (* Harvey P. Dale, Feb 26 2015 *)
    Select[Range[1500],Mod[#,3^IntegerLength[#]]==0&] (* Harvey P. Dale, Apr 04 2020 *)
Showing 1-2 of 2 results.