A050701 If composite k and its reverse are different and have same number of prime factors, then the larger of them is a term of the sequence.
51, 62, 85, 93, 94, 221, 302, 321, 341, 381, 413, 442, 492, 493, 502, 511, 513, 514, 522, 524, 533, 534, 551, 553, 561, 562, 574, 581, 582, 604, 605, 621, 622, 623, 642, 663, 682, 685, 705, 711, 723, 734, 741, 766, 771, 781, 794, 805, 814, 817
Offset: 1
Examples
a(n)=341 -> reverse(a(n)) = 143 gives the pair (143,341) of which only the larger value 341 is retained.
Programs
-
Mathematica
rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]]; Select[Range[825],!PrimeQ[#]&&PrimeOmega[#]==PrimeOmega[x=rev[#]]&>x&] (* Jayanta Basu, May 31 2013 *)
-
PARI
isok(m) = my(k=fromdigits(Vecrev(digits(m)))); (m%10) && !isprime(m) && (m>k) && (bigomega(k) == bigomega(m)); \\ Michel Marcus, Aug 18 2021
Extensions
Revised by Editors of OEIS, Oct 19 2019
Incorrect 394 and 523 removed and name clarified by Sean A. Irvine, Aug 17 2021