A050733
Numbers of form 3^k (values of k see A050724) containing no pair of consecutive equal digits (probably finite).
Original entry on oeis.org
1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 10460353203, 31381059609, 282429536481, 2541865828329, 109418989131512359209, 30903154382632612361920641803529
Offset: 0
A171550
Numbers n with property that decimal expansion of 2^n+3^n contains no pair of neighbor equal digits (probably finite).
Original entry on oeis.org
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 22, 23, 26, 27, 29, 45, 52, 73
Offset: 0
2^73+3^73 = 67585198634826967968486182914745315.
-
Reap[Do[id=IntegerDigits[2^m+3^m];rm=Rest[id]-Most[id];If[FreeQ[rm,0],Sow[m]],{m,0,10000}]][[2,1]]
Select[Range[0,80],FreeQ[Differences[IntegerDigits[2^#+3^#]],0]&] (* Harvey P. Dale, Dec 09 2021 *)
A171551
Numbers n with property that decimal expansion of 3^n-2^n contains no pair of neighbor equal digits (probably finite).
Original entry on oeis.org
0, 1, 2, 3, 4, 7, 8, 9, 10, 12, 13, 15, 18, 20, 21, 22, 23, 24, 26, 27, 29, 37, 50
Offset: 0
50 is a term because 3^50-2^50 = 717897986565952681927625,
while 49 is not because 3^49-2^49 = 2392(99)328(66)7(66)7576168(77)1 (four pairs of neighbor equal digits).
-
Reap[Do[id=IntegerDigits[3^m-2^m];rm=Rest[id]-Most[id];If[FreeQ[rm,0],Sow[m]],{m,0,10000}]][[2,1]]
Showing 1-3 of 3 results.