cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052061 Numbers k such that decimal expansion of k^2 contains no palindromic substring except single digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 23, 24, 25, 27, 28, 29, 31, 32, 33, 36, 37, 39, 41, 42, 43, 44, 48, 49, 51, 52, 53, 54, 55, 57, 59, 61, 64, 66, 68, 69, 71, 72, 73, 74, 75, 78, 79, 82, 84, 86, 87, 89, 93, 95, 96, 97, 98, 99, 104, 113, 116, 117, 118, 124
Offset: 1

Views

Author

Patrick De Geest, Jan 15 2000

Keywords

Comments

Leading zeros in the substrings are allowed so 103^2 = 10609 is rejected because 1{060}9 contains a palindromic substring.
Probabilistic analysis strongly suggests that this sequence is not finite. - Franklin T. Adams-Watters, Nov 15 2006

Examples

			118^2 = 13924 -> substrings 13, 39, 92, 24, 139, 392, 924, 1392, 3924 and 13924 are all non-palindromic.
		

Crossrefs

Programs

  • PARI
    noPalSub(n)={my(d);local(digit);digit=eval(Vec(Str(n)));d = #digit;for(len=2,d,for(i=1,d-len+1,if(isPalSub(i,len), return(0))));1};
    isPalSub(start,len)={my(b=start-1,e=start+len);for(j=1,len>>1,if(digit[b+j] != digit[e-j], return(0)));1};
    for(n=0,200,if(noPalSub(n^2),print1(n", ")))

Extensions

Program and b-file from Charles R Greathouse IV, Sep 09 2009

A050749 Squares containing no pair of consecutive equal digits.

Original entry on oeis.org

0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 121, 169, 196, 256, 289, 324, 361, 484, 529, 576, 625, 676, 729, 784, 841, 961, 1024, 1089, 1296, 1369, 1521, 1681, 1764, 1849, 1936, 2025, 2304, 2401, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3481, 3721, 3969, 4096, 4356
Offset: 1

Views

Author

Patrick De Geest, Sep 15 1999

Keywords

Crossrefs

Intersection of A043096 and A000290.
Cf. A050741.

Programs

  • Mathematica
    Select[Range[0,66]^2,FreeQ[Differences[IntegerDigits[#]],0]&] (* Jayanta Basu, May 31 2013 *)
    Select[Range[0,100]^2,SequenceCount[IntegerDigits[#],{x_,x_}]==0&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Sep 08 2017 *)

Formula

a(n) = A050741(n)^2. - Andrew Howroyd, Aug 11 2024

Extensions

Offset corrected by Andrew Howroyd, Aug 11 2024

A135140 Numbers n such that n and n^2 do not contain successive identical digits.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 13, 14, 16, 17, 18, 19, 23, 24, 25, 26, 27, 28, 29, 31, 32, 36, 37, 39, 41, 42, 43, 45, 48, 49, 51, 52, 53, 54, 56, 57, 59, 61, 63, 64, 68, 69, 71, 72, 73, 74, 75, 78, 79, 81, 82, 84, 86, 87, 89, 91, 92, 93, 95, 96, 97, 98, 101, 102, 103, 104, 121
Offset: 1

Views

Author

Zak Seidov, Feb 13 2008

Keywords

Crossrefs

A subset of A050741.

Programs

  • Mathematica
    Select[Range[0,150],Count[Differences[IntegerDigits[#]],0] == Count[ Differences[IntegerDigits[#^2]],0]==0&] (* Harvey P. Dale, Mar 14 2012 *)
Showing 1-3 of 3 results.