A050791 Consider the Diophantine equation x^3 + y^3 = z^3 + 1 (1 < x < y < z) or 'Fermat near misses'. Sequence gives values of z in monotonic increasing order.
12, 103, 150, 249, 495, 738, 1544, 1852, 1988, 2316, 4184, 5262, 5640, 8657, 9791, 9953, 11682, 14258, 21279, 21630, 31615, 36620, 36888, 38599, 38823, 40362, 41485, 47584, 57978, 59076, 63086, 73967, 79273, 83711, 83802, 86166, 90030
Offset: 1
Examples
12 is a term because 10^3 + 9^3 = 12^3 + 1 (= 1729). 2316 is in the sequence because 577^3 + 2304^3 = 2316^3 + 1.
References
- Ian Stewart, "Game, Set and Math", Chapter 8, 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
Links
- Lewis Mammel, Table of n, a(n) for n = 1..368
- Noam Elkies, Rational points near curves and small nonzero |x^3-y^2| via lattice reduction, arXiv:math/0005139 [math.NT], 2000.
- S. Ramanujan, Question 681, J. Ind. Math. Soc.
- Eric Weisstein's World of Mathematics, Diophantine Equation - 3rd Powers
Programs
-
Mathematica
r[z_] := Reduce[ 1 < x < y < z && x^3 + y^3 == z^3 + 1, {x, y}, Integers]; z = 4; A050791 = {}; While[z < 10^4, If[r[z] =!= False, Print[z]; AppendTo[A050791, z]]; z++]; A050791 (* Jean-François Alcover, Dec 27 2011 *)
-
PARI
is(n)=if(n<2,return(0));my(c3=n^3);for(a=2,sqrtnint(c3-5,3),if(ispower(c3-1-a^3,3),return(1)));0 \\ Charles R Greathouse IV, Oct 26 2014
-
PARI
T=thueinit('x^3+1); is(n)=n>8&select(v->min(v[1], v[2])>1, thue(T, n^3+1))>0 \\ Charles R Greathouse IV, Oct 26 2014
Extensions
More terms from Michel ten Voorde
Extended through 47584 by Jud McCranie, Dec 25 2000
More terms from Don Reble, Nov 29 2001
Edited by N. J. A. Sloane, May 08 2007
Comments